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Several classes of attacks

= Software vulnerability exploitation Reed
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Fault injection attacks

= « Natural » faults

cosmic

® Intentional faults
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Anatomy of a fault attack

Application
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int verify(S,PH S
e p) 5,P Fault Exploitation
Ir =1; faulty behavior
else
r= 0; e a
} returnr r (¥' Fault Observation

1\ faulty instruction(s)

Instruction Set Architecture =—

't‘ faulty micro-op

CPU RAM

DATA PATH (| |  ,2003000a

oooooooooo

= || [ EEEE Fault Propagation

'T‘ faulty bits

Logic Gates Memory Cells Flip Flops
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Fault Injection

[Yuce et al., 2018]
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Attacks on embedded software

~>1 1/0 MEM CPU

» Embedded Software assumes execution is correct

" [ncorrect execution as starting point for attack
= Privilege Escalation
= Sensitive Information leakage / key recovery



Common fault exploitation

* Cryptanalysis using fault injection
* Differential Fault Analysis
* Biased Fault Analysis
e Safe Error Analysis
* Algorithm-specific Fault Analysis

* Fault-aided Side-channel Analysis
* Fault-enabled Logical Attacks
* Fault-aided Reverse Engineering



Common fault exploitation

= Cryptanalysis using fault injection
= Differential Fault Analysis
= Biased Fault Analysis
= Safe Error Analysis
= Algorithm-specific Fault Analysis

= Fault-aided Side-channel Analysis
= Fault-enabled Logical Attacks
= Fault-aided Reverse Engineering



Differential Fault Analysis
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Bit-flip attack on AES

Fault Model:

\B flip 0
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A bit-flip results in a faulty cipher



Bit-flip attack on AES

Fault Model:

= Fault Differential , Bit-flip

c = sbox(v) @ k
c’'= sbox(v')® k

Hence A = ¢ @ c¢'= sbox(v) @ sbox(v')
sbox (v'")
= Fault Analysis
= Search v, v’ such that

HD(v,v’) = 1 AND sbox (v')
A = sbox(v) @ sbox(v'")

= Using a second bit flip, determine v k

= Determine the last round-key as: sbox (v') @ k
k = sbox(v)® c c'

= 32 bit-flip faults in round 10 disclose entire key



Classic DFA

DFA
Random Byte

m Fault Model 4 Random Bit w® C,C,C”, .. >K
Chosen Bit

Cryptographic
Algorithm

[Tunstall 2010] Single random byte fault at 8" round of AES-128: Key 2128 > 212

[Ali 2012] Two seq. byte fault at 9t", 10*" round of AES-192: Key 212 2> 1

Current DFA methods are optimal

IF

the fault model can be realized



Safe-error analysis

Input: Elliptic Curve Point P

secret integer k = {k, 1k »..k1kg}
Output: k.P

R[O0] =0
for 1 = n - 1 down to 0 do

R[O0] = 2.R[0]

R[1] = R[0] + P

R[0] = R[k;]
end for Double-Add Always

return R[O0] (SPA Countermeasure)



Safe-error analysis

Input: Elliptic Curve Point P

secret integer k = {k, 1k »..k1kg}
Output: k.P
R[O] = 0
for 1 = n - 1 down to 0 do
R[0] = 2.R[O] Dummy operation
R[1] = R[O0] + P —m7079s when
R[O] = RIlk;y] k;isequalto0
end for

return R[0O]



Safe-error analysis

Input: Elliptic Curve Point P

secret integer k = {k, 1k »..k1kg}
Output: k.P
R[0] = 0
or 1 = n — 1 down to 0 do
ik‘R[O] = 2.R[0]
R[1] = R[0] + P C-safe error
R[0] = R[k;y] Injecting a fault in a dummy
end for operation will not affect

return R[0] the output



Fault enabled logical attacks

= General-purpose computing
= Memory dump / extraction
= Control-flow hijacking
= Privilege escalation
= Secure Boot bypass



Memory dump attack

A typical subroutine found in security processors
is a loop that writes the contents of a limited mem-

ory range to the serial port: Memory Map
1 b = answer_address Plrogram
\ 2 a = answer_length mage
3 if (a == 0) goto 8 Instruction-skip Outport
4 transmit(*Db) f
\ © b=Db+1 Stack | buffer
6 a = a - 1 Instruction-skip or other instr replacement
7 goto 3 Data
8

We can look for a glitch that increases the pro-
gram counter as usual but transforms either the con-
ditional jump in line 3 or the loop variable decrement R. Anderson and M. Kuhn, “Tamper resistance: a

cautionary note,” 2nd USENIX Workshop on Electronic

in line 6 into something else.
Commerce. 1996.



Buffer overflow attack

vold myfunc (char *buf) {
char msg[20] = {0};
memcpy (msg, buf, sizeof (msg)-1);

} 20 4 4

const void *src,
size t len)
char *d = dest;
const char *s = src;
while (len--) Instruction-skip
*d++ = *s+t++;
return;

malicious buf

ARM Cortex MO

}

% S. Nashimoto et al. Buffer overflow attack with multiple fault injection and a proven countermeasure. J. Cryptographic
Engineering 7(1): 35-46 (2017)



Privilege escalation

rO =0 .. rll =0 Privilege Escalation

r7 = 0xdO = Adversarial Control of Critical Decisions

svc #0 // setuid system call

if (r0 == 0) // success if (access allowed == 0)
system (“/bin/sh”) ; sensitive op( );

Q Niek Timmers, Cristofaro Mune: Escalating Privileges in Linux Using Voltage Fault Injection. FDTC 2017



Privilege escalation

Instruction
skip
rO =0 .. rll =0 Privilege Escalation
r7 = 0xd0 = Adversarial Control of Critical Decisions
svc #0 // setuid system call
if (r0 == 0) // success if (access allowed == 0)
system (“/bin/sh”) ; sensitive op( );
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@ Niek Timmers, Cristofaro Mune: Escalating Privileges in Linux Using Voltage Fault Injection. FDTC 2017



Flash

BL1

BL2

Bypassing secure boot

CPU
SRAM ROM oTP
PUB_KEY
Rom ol

Bootloader 2 (BL2) -
Decrypt ‘ Authenticate

Linux Kernel -
Decrypt ‘ Authenticate

Less privileges

DDR

/* copy image from flash to sram */
memcpy (IMG_RAM, IMG FLASH, IMG_SIZE)

/* decryption ? */
if (secure_boot_dec) {
/* decrypt image in place */
decrypt (IMG RAM, IMG SIZE, KEY)
}
/* authentication ? */
if (secure boot_en) {
/* copy signature from flash to sram */
memcpy (SIG_RAM, SIG_FLASH, SIG_SIZE);

/* compute hash over SRAM image */
sha (IMG RAM, IMG SIZE, IMG HASH);

/* compute hash from signature */
rsa(PUB_KEY, SIG RAM, SIG HASH)

/* compare hashes */
if (compare (IMG_HASH, SIG_HASH) !'= 0){
while (1) ;
}
jump to_next stage():

}




Original Flash
content

BL1

Bypassing secure boot

Modified Flash
content

shellcode

/* copy image from flash to sram */
memcpy (IMG_RAM, IMG FLASH, IMG_SIZE)

/* decryption ? */
if (secure_boot_dec) {
/* decrypt image in place */
decrypt (IMG_RAM, IMG SIZE, PUB KEY)
}
/* authentication ? */
if (secure boot_en) {
/* copy signature from flash to sram */
memcpy (SIG_RAM, SIG_FLASH, SIG_SIZE);

/* compute hash over SRAM image */
sha (IMG_RAM, IMG SIZE, IMG HASH);

/* compute hash from signature */
rsa (PUB_KEY, SIG_RAM, SIG_HASH)

/* compare hashes */
if (compare (IMG_HASH, SIG_HASH) !'= 0){
while (1) ;
}
jump to_next stage():

}




Bypassing secure boot

Original Flash Modified Flash
content content
shellcode
a1 et ptr opr optr
ptr ptr  ptr  ptr
ptr ptr  ptr  ptr
MultiWorldCopy:

LDMIA rl1!, {r3
STMIA r0!, {r3

SUBS r2, r2, #32
BGE MultiWorldCopy

- r10}
- r10}

/* copy image from flash to sram */
memcpy (IMG_RAM, IMG FLASH, IMG_SIZE)

/* decryption ? */
if (secure_boot_dec) {
/* decrypt image in place */
decrypt (IMG_RAM, IMG SIZE, PUB KEY)
}
/* authentication ? */
if (secure boot_en) {
/* copy signature from flash to sram */
memcpy (SIG_RAM, SIG_FLASH, SIG_SIZE);

/* compute hash over SRAM image */
sha (IMG_RAM, IMG SIZE, IMG HASH);

/* compute hash from signature */
rsa (PUB_KEY, SIG_RAM, SIG_HASH)

/* compare hashes */
if (compare (IMG_HASH, SIG_HASH) !'= 0){
while (1) ;
}
jump to_next stage():

}




Bypassing secure boot

Modified Flash \

Original Flash
content content
shellcode
o —
ptr ptr ptr ptr
MultiWorldCopy: ,_

LDMIA rl1!, {r3
STMIA r0!, {r3

SUBS r2, r2, #32
BGE MultiWorldCopy

- r10}=tp» LDMIA rl!,{..,..,pc}
- r10}

% N. Timmers, A. Spruyt and M. Witteman.
Controlling PC on ARM Using Fault Injection. FDTC 2016

/* copy image from flash to sram */
memcpy (IMG_RAM, IMG FLASH, IMG_SIZE)

/* decryption ? */
if (secure_boot_dec) {
/* decrypt image in place */
decrypt (IMG_RAM, IMG SIZE, PUB KEY)
}
/* authentication ? */
if (secure boot_en) {
/* copy signature from flash to sram */
memcpy (SIG_RAM, SIG_FLASH, SIG_SIZE);

/* compute hash over SRAM image */
sha (IMG_RAM, IMG SIZE, IMG HASH);

/* compute hash from signature */
rsa (PUB_KEY, SIG_RAM, SIG_HASH)

/* compare hashes */
if (compare (IMG_HASH, SIG_HASH) !'= 0){
while (1) ;
}
jump to_next stage():

}




Real world fault attacks

= Traditionally, a smart-card concern
= Security requirements include fault attack resistance

= Xbox reset glitch hack! -- 2011

= Launch your own code (Linux kernel) Often make use of

vulnerabilities
or lack of secure coding

= Glitching the (Nintendo) Switch? -- 2018

» Firmware extraction of different widespread microcontrollers — 20193
& 20204

Lhttp://www.logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html|
2 https://media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switch

3 https://tches.iacr.org/index.php/TCHES/article/view/7390

4 https://tches.iacr.org/index.php/TCHES/article/view/8727



http://www.logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html
https://media.ccc.de/v/c4.openchaos.2018.06.glitching-the-switch
https://tches.iacr.org/index.php/TCHES/article/view/7390
https://tches.iacr.org/index.php/TCHES/article/view/8727

The present and the future

Hardware-controlled
Fault Injection

1997 (Bellcore) - now

Fault Injection Hardware
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The present and the future

Hardware-controlled
Fault Injection »

1997 (Bellcore) - now

Fault Injection Hardware

Software-controlled

Fault Injection

Software Tasks

2014 (Rowhammer) - now

Fault Control -] Injector

CTL/Injection Victim

TimingT v ¢
~ Physical Stress Physical Stress

2

2

1/0 MEM CPU

1/0 MEM

CPU

2014
2017
2019
2020

: Rowhammer
: CLKSCREW

: VOLTJOCKEY
: PlunderVolt
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" Fault exploitation

= Fault effects and modelling
= Countermeasures

" Robustness analysis

= Research lines in this area



Fault effects and fault modeling

. 'nitn‘ﬁr.'fy(s’P){ . Fault Exploitation
2 if(S=P) ’
Application 3 Ir =1; faulty behavior
0S else
) TN ORO
Irmware 5 returnr r r .
} (5) Fault Observation
1‘ faulty instruction
Software
Instruction Set Architecture =—
Hardware
T faulty micro-op
Decode Execute
. .
Micro-Architecture - s/ T 1 e
Level 8\ [ Instruction g Fault Propagation
=|| Memory |© Register File

Data Mem

'T‘ faulty bits

Logic Gates Memory Cells Flip Flops

{j @ @ Fault Manifestation

Fault Injection

Boot ROM |

Fault exploitation

=  Macro view of fault attacks

Cryptographic key retrieving [pehbaoui 2013]
[Kumar 2017]

Bypassing secure boot [Timmers 2016]
Taking over a device [Timmers 2017]
Privilege escalation [vasselle 2017]

Firmware extraction [Bozzato 2019]

= Useful from an attacker point of view

31



Fault effects characterization

= Necessary to design countermeasures

Fault models

= Simplified or abstracted representation of a physical fault effects

= At agiven code level
= Hardware : logical, micro-architectural

= Software : binary, assembly code, IR, source code

Fault modeling

source

code =|c
.I . ‘!ffg;'{:% cxse,
compilation Caeas
optimisation "i
assembly —
code .S
. 010110
binary 110011
101000
code 0001

Physical effects b



Software

Hardware

Micro-Architecture
Level

Circuit Level

Physical Level

Fault attacks at hardware level

Instruction Set Architecture =—

1‘ faulty micro-op

Decode Execute
5 T ) e :
o\ [ Instruction | & 2 Fault Propagation
=|| Memory |° Register File

Boot ROM | Data Mem

1‘ faulty bits

Logic Gates Memory Cells Flip Flops . .
Fault Manifestation

electrical transient

&
0

Timing Power EM Heating Light

R O §

Fault Injection

HW fault model

1. Granularity
* Single bit, few bits, word

2. Fault type
 Bitflip, set/reset, random

3. Location and timing control
* Precise, loose, none

4. Fault duration
* Transient, permanent, destructive

33



Fault attacks at software level

1 intverify(S,P) S Fault Exploitation
int r, SPp
2 if(S=P) ’
Application 3 Ir =1; faulty behavior
else
. 05 4 r=0; e e
Firmware 5 returnr r e r . .
} Fault Observation Observation depends on
faulty instruction
Software 1‘ " HWta rget
Instruction Set Architecture =—
Hardware

T faulty micro-op Fault injection means

Decode Execute .
= Clock/Power glitch

Micro-Architecture
Level

T
:
4

Register File
Data Mem

'T‘ faulty bits

Logic Gates Memory Cells Flip Flops

{j @ @ Fault Manifestation = Targeted part of the HW

Running code

Store

Fault Propagation = EM pulse

Instruction
Memory

Boot ROM |

|-Fetch

= Targeted part of the HW

=  |Laser

34



Characterization of faults effect

= No methodology or easy way to characterize achievable faults (grey-box model)
= Huge parameter space: running code, parameters of the fault injection mean, target HW

= Common steps for SW fault modeling / characterization:
1. Scan the parameter space to find out configurations where faulty outputs are observed
2. Select one configuration with a high probability to observe a faulty output

3. Fault model elaboration on this selected area



Modeling of fault effects up to software level

Inject faults while running specific and carefully selected test codes :

= Put the processor in a known state A (contents of registers and memory)
= Run a carefully chosen code (that normally leads to the final state S)

" |nject a fault
= Qutput the content of registers / memory — final state S’

Analyze all the output S’ by comparing it to the expected one S

Infer possible explanations / fault models at different level (e.g. micro-
architectural level, ISA level)

Validate the fault models

= By simulation: comparison of observed results with the simulation outputs

= By refinement: use specifically designed test codes and go back to step 1



Modeling of fault effects up to software level

'@ Balasch et al., An In-depth and Black-box Characterization of the Effects of Clock Glitches on 8-bit MCUs FDTC 2011.

Q Moro et al., Electromagnetic Fault Injection: Towards a Fault Model on a 32-bit Microcontroller. FDTC 2013.

‘@ Dureuil et al., From code review to fault injection attacks: Filling the gap using fault model inference. CARDIS 2015.

'@ Kelly et al., Characterising a CPU fault attack model via run-time data analysis. HOST 2017

‘@ Kumar et al. An In-depth and Black-Box Characterization of the Effects of Laser Pulses on ATmega328P. CARDIS 2018

'@ Colombier et al., Laser-induced Single-bit Faults in Flash Memory: Instructions Corruption on a 32-bit Microcontroller, HOST 2019.



Voltage or clock glitch effects

Delay

VCC
combinatorial
logic

CLK \ CLK

<«———> Setup + hold time

38



VCC

CLK

Voltage or clock glitch effects

\ CLK

Delay

combinatorial
logic

<«———> Setup + hold time

Glitch

4

Setup time violation
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Voltage or clock glitch effects

Delay ‘ Setup time violation

% : B
vcc

\/Glitch combinatorial
logic

CLK \ CLK

<«——+ Setup + hold time

40



Voltage or clock glitch effects up to software level

Instruction replacement

VCC
Loaded data corruption
Glitch parameters must
be carefully selected ! Lk

Balasch et al., An In-depth and Black-box

\Glitch

i

Characterization of the Effects of Clock Glitches on 8-

bit MCUs FDTC 2011.

CEU RAM
hale Ll 0x2003000a
0x2004000f
[ CODE 0x00832020
. —>
s
T
__ i 0x0000000A
| 0x0000FFFF
Registers PC 0x63756F63
DATA 0x0000756F
0x00000000
0x00000000
0x00000000
CONTROL UNIT
BUS 3 )

ROE o

A

y

IMEM

A 4

DMEM

41



EM pulse effects up to software level

= Corruption of transfers from/to
the Flash

" |nstruction replacement : 25%
equivalent to “skip instruction”

= |Loaded data corruption

Moro et al., Electromagnetic Fault
Injection: Towards a Fault Model on

a 32-bit Microcontroller. FDTC 2013.

CEU RAM
hale Ll 0x2003000a
0x2004000f
[ CODE 0x00832020
. —>
s
T
__ i 0x0000000A
| 0x0000FFFF
Registers PC 0x63756F63
DATA 0x0000756F
0x00000000
0x00000000
0x00000000
CONTROL UNIT
BUS 3 )

233 53153 53

A

I

Flash

RAM
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Laser beam effects up to software level

Past work

= Precise fault (bit granularity) in memory or

register

= Data or register corruption

Recent work

® Transient faults in Flash memory
= Bit set or bit reset depending on the Flash
= Precision : faulty bit / pair of bits

» |[nstruction replacement or data corruption

@ Colombier et al., Laser-induced
Single-bit Faults in Flash Memory:

Instructions Corruption on a 32-
bit Microcontroller, HOST 2019.

CPU

RAM

DATA PATH

A
- —>
B

EEE
B
N w—)y
|

Registers

PC

1 }

CONTROL UNIT

0x2003000a
0x2004000£f

Sl 0x00832020

0x0000000A
0x0000FFFF
0x63756F63
DATA 0x0000756F
0x00000000
0x00000000
0x00000000

BUS

'

Q Kumar et al. An In-depth and Y
Black-BoxCharacterization of the

Effects of Laser Pulses on
ATmega328P. CARDIS 2018

e

Flash

RAM
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Fault injection effects

Observations/attacker’s exploitation

1 intverify(S,P){ S
intr;
if (5= P ~d
r=1;

t

Instruction Set Architecture (ISA) _—
2
CPU RAM
DATA PATH | | 0,5003000a
0000000000
CODE
N 0x00832020
_— =
R
|
—_— 0x0000000A
[ 0x0000FFFF
Registers PC 0x63756F63
DATA 0x0000756F
oooooooooo
0x00000000
0x00000000
CONTROL UNIT
BUS [ $
r 3

Timing Power EM Heating Light ,

nr 4+ 3§ ¥

Injection
[Yuce et al., 2018]



Sw

HW

intr;

1 intverify(S,P){

2 if(S=P
3 r=1;
else 3) ()
4 r=0
5 returnr r e r
Instruction Set Architecture (ISA)
CPU RAM
DATA PATH | | 0,5003000a
— copE o %020
)
|
—_— 0x0000000A
e Tutecs ec onga736863
DATA 0x0000756F
oooooooooo
T l 0x00000000
0x00000000
‘ CONTROL UNIT ‘
BUS [ $

faulty bits }

Timing Power EM Heating Light

nr 4+ 3 § ¢

[Yuce et al., 2018]

Fault injection effects

Observations/attacker’s exploitation

Injection

11001011001011101001
11001011001011001001

Alteration of currents & charges



Sw

HW

1 intverify(S,P){
intr;
if (S P)

2 Pg
; I

4 reo 9 0
5 returnr

Instruction Set Archltecture (1SA)

CPU RAM

LA bt 0x2003000a

0x2004000f

— CODE 00832020

—_—

]
I

__ — 0x0000000A

— 0x0000FFFF

Registers PC 0x63756F63

DATA 0x0000756F

0x00000000

000000000

000000000

CONTROL UNIT (|
BUS [ [}
s
faulty bits

Timing Power EM Heating Light

1+ 3 ] ¢

[Yuce et al., 2018]

Fault injection effects

Observations/attacker’s exploitation

Injection

Instruction or data corruptions

11001011001011101001
11001011001011001001

Alteration of currents & charges



Sw

HW

1 intverify(S,P){
intr;
if (S P)

2 Pg
; I

4 reo 9 0
5 returnr

Fault injection effects

Observations/attacker’s exploitation

Faulty instr. ,

Instruction Set Archltecture (1SA)

CPU RAM
RLIYD EEb 0x2003000a
0x2004000f
— CODE 00832020
_— >
]
I
__ = 0x0000000A
r— 0x0000FFFF
Registers PC 0x63756F63
DATA 0x0000756F
0x00000000
000000000
000000000
CONTROL UNIT
BUS [ [}
s
faulty bits

Timing Power EM Heating Light

1+ 3 ] ¢

[Yuce et al., 2018]

Injection

Instruction | age e Ad
[r

register

7 add
0] corruption

strb strb

skip

Instruction or data corruptions

11001011001011101001
11001011001011001001

Alteration of currents & charges

r3,
r3,

r2,
[r0]

rl



Sw

HW

1 intverify(S,P){
intr;
2 if (S P)
3
else
4 9 0
5 retu rn r
Faulty instr.
Instruction Set Archltecture (1SA)
CPU RAM
DATA PATH 0x2003000a
— | CoDE 0 020
)
=
—_— 0x0000000A
S ec onga736863
DATA 0x0000756F
T l 0x00000000
0x00000000
0x00000000
‘ CONTROL UNIT ‘
BUS [ $
r 3
faulty bits

Fault injection effects

Observations/attacker’s exploitation

4

Timing Power EM Heating Light

1+ 3 ] ¢

[Yuce et al., 2018]

Injection

Instruction | age e Ad
[r

?

register

7 add
0] corruption

strb strb

skip

Instruction or data corruptions

11001011001011101001
11001011001011001001

Alteration of currents & charges

r3,
r3,

r2,
[r0]

rl



Fault impact at source level

Instruction skip at assembly level

= The skipped instruction writes into a general purpose register (add, load, ...)
= Next use of faulty register will propagate the fault

=  Data corruption

a=>b+ c;

add r3, r2, ril add—r3;,r2,rit
strb r3, [r0] ‘ strb r3, [r0]

a = attack();



Fault impact at source level

Instruction skip at assembly level

= The skipped instruction writes into a general purpose register (add, load, ...)
= Next use of faulty register will propagate the fault

=  Data corruption

a=>b+ c;

4

add r3, r2, rl add r3, r2, rl
strb r3, [r0] ‘ strb r3, [r0]

= Equivalent to the corruption of destination register a = attack();



Fault impact at source level

Instruction skip at assembly level

= The skipped instruction writes into a general purpose register (add, load, ...)
= Next use of faulty register will propagate the fault

=  Data corruption

a=>b+ c;

add r3, r2, rl add r3, r2, rl
strb r3, [r0] ‘ strb—r3,—rot

= Equivalent to the skip of the store instruction a = attack();



Fault impact at source level

Instruction skip at assembly level cond_=_*ch;
getd Tabell;then;
= The skipped instruction writes into a general purpose register (add, load, ...) if{(!cond)
lalbel then:
= Next use of faulty register will propagate the fault // do semethingl
=  Potential branch corruption / test inversion }
else
{
cond = *ch; 1dr r3, [r0] Tdr—r3,—frot 11 do sometihing?
if (cond) cmp r3, #0 cmp r3, #0 }
{ b.ne then b.ne then
// do somethingl else: .. else: .. cond = *ch;
} ‘ goto label else;
else - - {
{ j next j next // do somethingl
// do something2 then: .. then: .. }
} else
next: next: {
label else:
. . . . // do something2
= Equivalent to a jump insertion }




Fault impact at source level

Instruction skip at assembly level
= The skipped instruction writes into a general purpose register (add, load, ...)

= Next use of faulty register will propagate the fault

=  Potential branch corruption / test inversion ,
cond = *ch; 1ldr r3, [r0] ldr ré, [rO]
if (cond) cmp r3, #0 cmp r3, #0

{ b.ne then b.ne then
// do somethingl else: v else:
} —>
else - -
{ j next j next
// do something2 then: .. then:
}
next: next:

cond = *ch;

goto label then;
{

label_ then:
// do somethingl

}

else

{

// do something2

}

= Equivalent to a transient memory corruption (load instruction)

cond = *ch;
goto label else;
{

// do somethingl

}

else

{

label else:
// do something2

}




Fault impact at source level

Instruction skip at assembly level
= The skipped instruction writes into a general purpose register (add, load, ...)
= Next use of faulty register will propagate the fault

=  Potential branch corruption / test inversion

cond = *ch; 1ldr r3, [r0] ‘\\ldr r3, [x0]
if (cond) cmp r3, #0 cmp r3, #0

{ b.ne then b.ne then

// do somethingl else: v else:

} —>
else - -

{ j next j next

// do something2 then: .. then:

}

next: next:

cond = *ch;
goto label_ then;

{
label_ then:

// do somethingl

}

else

{

// do something2

}

= Equivalent to a corruption of the flags (cmp instruction skip or directly)

cond = *ch;
goto label else;
{

// do somethingl

}

else

{

label else:
// do something2

}




Fault impact at source level

Instruction skip at assembly level
= The skipped instruction is a conditionnal or unconditionnal jump
=  The fall-through block will be executed

=  Potential control-flow corruption

cond = *ch; 1dr r3, [r0] 1dr r3, [rO0]
if (cond) cmp r3, #0 cmp r3, #0

{ b.ne then b-ne—then

// do somethingl else: .. else:

} —>
else - -

{ j next J—rnext

// do something2 then: .. then: ..

}

next: next:

cond = *ch;
goto label else;

{
// do somethingl

}

else

{

label else:
// do something2

}

= Equivalent to a jump insertion

cond = *ch;

if (cond)
{
label then:
// do somethingl
}
else
{

// do something2
goto label then;
}




cond = *ch;

Fault impact at source level
goto label else;

Instruction skip at assembly level {

. . . . . . d thingl
= The skipped instruction is a conditionnal or unconditionnal jump {/ © something

.o ~

= P
cond = * Effect of a instruction skip of a jump depends on the code layout,
lf{(cond which is unknown at source level!
// do
}
else \\\ </AA
{ ) =) }
// do something2 then: .. then: ..
} else
next: next: {
’ ) // do something2
= Equivalent to a jump insertion goto label_then;
}




Fault impact at source level

Fault impacting a general purpose register

=  Next use(s) of faulty register will propagate the fault

= Consequences
=  Data corruption(s)

=  Control-flow corruption



Fault impact at source level

Fault impacting a general purpose register

=  Next use(s) of faulty register will propagate the fault

=  Consequences / fault models at source level
= Data corruption(s): var = attack();

=  Control-flow corruption: goto label;



Fault impact at source level

Fault impacting a general purpose register

Next use(s) of faulty register will propagate the fault

Consequences / fault models at source level

Data corruption(s): var = attack();

Control-flow corruption: goto label;

Fault propagation related to

Subsequent uses of the faulty register: « criticality »

Initial code and code compilation/optimization

1d r3, [r0]
st r3, [rl]

bnz r3, then
else:

j next
then:

next:



Fault impact at source level

Instruction replacement

One instruction is skipped

One unexpected instruction is executed

Combination of instruction skip effects with the one of the extra instruction

From an attacker point of view

Only exploitation matters

Need to keep the effect as controllable as possible

Instruction skip is the most convenient

Can be achieved through different injection means

mem_cpy:

L2:

.L7:

push {r4, r5, 1r}
movs r3, #0
eps—r2r351te2

bge .L7

1ldrb r5, [r0, r3]
strb r5, [rl, r3]
bne .L5

adds r3, r3, #1
b L2

movs r0, #0

pop {r4, r5, pc}



Fault model at source level

No one-to-one correspondence between fault models at instruction level and source level
= Astatement is translated into several assembly instructions
=  Several faults at assembly level can result into the same fault at source level

= Afault according to a source code fault model may not exist once the code is compiled

Some faults at assembly level cannot be directly expressed at source-code level

= Code placement, code optimization

Source-code fault models are necessary
=  Source code protection

=  Vulnerability analysis



Sw

HW

1 intverify(S,P){
intr;
2 if (S P)
3
else
4 9 0
5 retu rn r
Faulty instr.
Instruction Set Archltecture (1SA)
CPU RAM
DATA PATH 0x2003000a
— | CoDE 0 020
)
=
—_— 0x0000000A
S ec onga736863
DATA 0x0000756F
T l 0x00000000
0x00000000
0x00000000
‘ CONTROL UNIT ‘
BUS [ $
r 3
faulty bits

Fault injection effect

Observations/attacker’s exploitation

4

Timing Power EM Heating Light

1+ 3 ] ¢

[Yuce et al., 2018]
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Sw

HW

1 intverify(S,P){
intr;
2 if (S P)
; I
e se
4 9 0
5 return r

Faulty instr.
Instruction Set Archltecture (1SA)

CPU RAM

DATA PATH 0x2003000a

0x2004000£
— CODE 00832020
-

s
[
- 0x0000000A
e 0x0000FFFF
Registers BC 0x63756F63
DATA 0x0000756F

0x00000000

0x00000000

‘ 0x00000000

CONTROL UNIT

BUS t t

faulty bits

Fault injection effect

Observations/attacker’s exploitation

4

Timing Power EM Heating Light

1+ 3 ] ¢

[Yuce et al., 2018]

Injection

Control flow disruption (test inversion, jump insertion) & variable

corruption & possible combination

Instruction @ add e Ad
[r

skip strb r3,

Instruction or data corruptions

11001011001011101001
11001011001011001001

Alteration of currents & charges

register

corruption

r3,
r3,

r2,
[r0]

rl



Agenda

* Fault exploitation

* Fault effects and modelling
* Countermeasures

* Robustness analysis

* Conclusion and perspectives



Protections against fault injection attacks

Hardware-based countermeasures [t sar et al., 2006]

= lJitters
= Light sensor, glitch detectors [zussa etal, 2014 s L
m Redundancy [Karaklajic et al, 2013] 0,0

* Error correcting codes (registers, memory)

= No full guaranty -

Software-based countermeasures [verbauhede, 2011] [Rauzy et al., 2015]
= Redundancy at function level

= Algorithm-specific protection (e.g. RSA)
= Ad-hoc protections designed by expert engineers

= |n practice combination of both in secure elements



Countermeasures

" Principle of software countermeasures
= Data integrity
= Code integrity
= Control-flow integrity
= Limitations
= Compiler-assisted code hardening

" Protection against instruction skip

" Loop hardening scheme

= | imitations



Countermeasures

" Principle of software countermeasures
= Data integrity
= Code integrity
= Control-flow integrity
= Limitations
= Compiler-assisted code hardening

" Protection against instruction skip

" Loop hardening scheme

= | imitations



Countermeasures for data integrity

Fault model add  r1,r0, #1

= Data corruption: register corruption, load/store corruption ' _4q 1 ;0 #1 || e add  r2,r0, #1
S compare cmp r2, rl
Redundancy-based protections bne  fault_detection
= Duplication of instructions involved in a computation » L 10)
r rl,][r
=  Comparison of results of duplicated computations dr 1, [rO] SpIENS Idr  r2, [rO]
. g compare cmp rz’ rl
" Detection of b.ne fault_detection
= Register corruption (rl or r2) @ L[]
= Load / store corruption str rl, [rO] duplicate Idr  r2, [rO]
’ compare cmp rz’ rl
|

Need available registers b.ne fault detection

% A. Barenghi et al. Countermeasures against fault attacks on software implemented AES.
5th Workshop on Embedded Systems Security (WESS’10)



Countermeasures for data integrity

Fault model
= Data corruption: register corruption, load/store corruption and memory corruption
Redundancy-based protections

= Data duplication in addition to instruction duplication

= Detection of

= Memory corruption ldr  r1, [rO]
_ Duplicate data, Idr r2, [rO+offset]
= Load/store corruption ldr r1, [rO] and compare /| cmp 12, rl

[ | Register corru ption b.ne fauIt_detection

= High overhead: performance and memory footprint

% Reis et al. SWIFT: Software Implemented Fault Tolerance.
International Symposium on Code Generation and Optimization. 2005



Countermeasures for code integrity

Fault model

= |nstruction skip

Redundancy-based protections add 1,10, #1
add rl; rO, #1 duplicate add rl, ro; #1
= |nstruction duplication without detection

= Tolerance to one instruction skip (n-replication if needed)

= Only for idempotent instructions

= Transformation of non-idempotent instructions

add rX, rl, r2

transform into add FX, rl, r2 add rX; rl; r2
add r]_' r‘]_’ r2 idempotent duplicate
instructions mov rl, rX mov rl, rX

mov rl, rX

@ Moro et al. Formal verification of a software countermeasure against instruction skip attacks.
Journal of Cryptographic Engineering 2014.



Countermeasures for code integrity

Redundancy-based protections

= More complex transformation of non-idempotent instructions

= The function call example

add  r4, return_label
add  r4, return_label

add  r4, return_label a:s :r, rj, zi
transform into add |r’ r4' #1 a I, T,
bl ?dempo'.cent b @fCt duplicate b @fct
instructions b @fct
return_label:
return_label:

Moro et al. Formal verification of a software countermeasure against instruction skip attacks.
Journal of Cryptographic Engineering 2014.



Countermeasures for code integrity

Fault model

" |nstruction replacement

Redundancy-based protections
= Instruction duplication with detection

= Detection of

= Oneinstruction skip Idr 1, [rO]
. . duplicate Idr rz’ [rO]

= Some instruction replacements Idr r1, [rO] and
compare cmp r2,rl

b.ne fault_detection

Q A. Barenghi et al. Countermeasures against fault attacks on software implemented AES.
5th Workshop on Embedded Systems Security (WESS’10)



Countermeasures for code integrity

Fault model

= |nstruction corruption

~

Redunc

= |nstrt No software protection for full code integrity

= Dete (i.e. against all kinds of instruction replacement or disruption)
= (
. Need HW support !

\l

Q A. Barenghi et al. Countermeasures against fault attacks on software implemented AES.
5th Workshop on Embedded Systems Security (WESS’10)



Control flow integrity

Fault model
= Jump insertion

Different levels of control-flow integrity

Intra basic block
integrity of straight-line code

Intra procedural

integrity of control flow transfers inside a function
(control flow graph)

Inter procedural
integrity of function calls and returns

foo2:

fool:

call foo2

7

P ooe

call foo3




Intra basic block control flow integrity

Counter-based protections [akkar et al., 2003] foo2:
w
\\ fool:
~
= Dedicated counters incremented between instructions RN
\\
. |-
~
= Check of their values at some specific points : f/\ fa” foo2
cnt :=va “es
instl I/
= At the end of each BB cnte+ s
o /I call foo3
instN /
cnt++ V4
cmp cnt, end_val /
b.eq next /

J<error>

ﬁ‘ '



Intra basic block control flow integrity

Counter-based protections [akkar et al., 2003] foo2:
w
\\ fool:
~
= Dedicated counters incremented between instructions RN
\\
. |-
~
= Check of their values at some specific points : f/\ fa” foo2
cnt :=va
instl I/
= At the end of each BB: only detects some intra BB jumps <" / call foo3
cnt++ Il
instN /
cnt++ Y4
cmp cnt, end_va /
b.eq next /

J <error>



Control flow integrity

Counter-based protections

Dedicated counters incremented between instructions

Check of their values at some specific points

At the end of each BB: only detects some intra BB jumps

At the beginning of target blocks

cnt - val‘/\

instl
cnt++

cnt++
instN
cnt++
bne next

o~

foo2:

cmp cnt, XXXXX
b.ne <error>

cnt :=val2
instl
cnt++
cnt++
instP

cnt++
j next

fool:

call foo2
b

Y oo

call foo3




Counter-based protections

Dedicated counters incremented between instructions

Check of their values at some specific points

At the end of each BB: only detects some intra BB jumps

At the beginning of target blocks

Need for extra code

cnt - val‘/\

instl
cnt++

cnt++
instN
cnt++
bne next

‘//,/’”‘

Control flow integrity

foo2:

\

cmp cnt, XXXXX
b.ne <error>

cnt :=val2
instl
cnt++

cnt++
instP

cnt++
j next

fool:

call foo2
b

Y oo

call foo3




Control flow integrity

Counter-based protections

Dedicated counters incremented between instructions

Check of their values at some specific points

At the end of each BB: only detects some intra BB jumps

At the beginning of target blocks

Need for extra code : still misses some jumps

cnt - val‘/\

instl
cnt++

cnt++  /

instN
cnt++
bne next

foo2:

\

cmp cnt, XXXXX
b.ne <error>

cnt :=val2
instl
cnt++

cnt++
instP

cnt++
j next

fool:

call foo2
b

Y oo

call foo3




Control flow integrity

Counter-based protections foo2:

S fool:
=  Dedicated counters incremented between instructions

= Check of their values at some specific points — f/\

call foo2
7

,.--

inst1 cnt :=val2 y
. . cnt++ inStl Il eese
= At the end of each BB: only detects some intra BB jumps cnt++ /| call foo3
cnt++ /
instN cnt++ /
= At the beginning of target blocks cnt++ instP
bne next cnt++ /
= Need for extra code /\:] jnext |/
. e, . . . \/ lll
= Qverlap of counters initialization and check e Y,
/
= Take into account branch outcome cmp cnt, XXXXX /

b.ne <error>

J-F. Lalande et al. Software countermeasures for control flow integrity of smart
card C codes. ESORICS 2014. 7



Countermeasures for control flow integrity

Signature-based protections [oh et al. 2002] f002: .
[Goloubeva et al., 2005] check(rs, foo2_id) \\
= Unique identifier / signature assigned to every mov rs, id2 AN fool:

Combination siep, 2003]
Step counters inside basic blocks

basic block (and function)
Use to check every single control flow transfer
Global signature computation limits the number of

Signature computed with the branch condition value /

check(rs, id2)

mov rs, iwv rs, id4 Aall foo2
/

mov rs, foo2_id

check(rs, id3) check(rs, id4) K
U
Ensure the CFG integrity mov rs. id5 mov rs, id5 ol
’ /| call foo3
Need for branch condition integrity / data integrity m‘(‘d/s) ]
check(rs, i /

mov rs, id2

Signature for control flow transfers check(rs, id6) /'



Summary on SW protection

= Mostly based on
= Redundant (or complementary ) data
= Duplication of computations
= Step counters or signatures
= Consistency checks

= Typical usages at source-code level

= Duplication of conditions and tests
= Duplication of critical variables
= Tracers (step counters)

= Difficult part of code hardening: Which protections ? Where ?

» Protection are manually deployed, considering a specific threat model i.e.
attacker’s capabilities



A small example

#define BOOL FALSE OxAA // specific values for Booleans
#define BOOL TRUE 0x55

int verifyPIN(char *cardPin , char *userPin , unsigned size) {
unsigned 1i;
unsigned diff = 0O;
/********** Comparison lOOp **********/
for (1 = 0; 1 < size ; i++)
if (userPin[i] !'= cardPin[i])
diff = 1;

if (diff == 0) // PIN codes match
return BOOL TRUE;

else // PIN codes differ
return BOOL_FALSE;

return BOOL_FALSE;
}



A better small example

#define BOOL FALSE OxAA // specific values for Booleans
#define BOOL TRUE 0x55

int verifyPIN(char *cardPin , char *userPin , unsigned size) {
unsigned 1i;
unsigned diff = 0O;
[***kkkk*x**k Comparison loop *****kkkxxx/
for (1 = 0; 1 < size ; i++)
diff += userPin[i] * cardPin[i]); // constant-time loop body

if (diff == 0) // PIN codes match
return BOOL TRUE;

else // PIN codes differ
return BOOL_FALSE;

return BOOL_FALSE;
}



A small example

##define BOOL FALSE OxAA // specific values for Booleans

#define BOOL TRUE 0x55

int verifyPIN(char *cardPin , char *userPin , unsigned size) {

unsigned 1i;
unsigned diff = 0O;
/********** Comp ison lOOp **********/
for (1 = 0; 1 <’size ; i++)
diff += userPin[i] '= cardPin[i]);

if (diff == 0),// PIN codes match
return BOOL TRUE;

else // PIN codes differ
return BOOL_FALSE;

return BOOL_FALSE ; ,
}

Attacker’s goal : bypass authentication
check using a wrong userPin

Possible means:
* Loop corruption (0 iteration)
* Final check corruption

* Return value corruption




#define BOOL FALSE OxAA

Protecting the small example

#define BOOL TRUE 0x55

// specific values for Booleans

int verifyPIN(char *cardPin , char *userPin , unsigned size) {

unsigned i, j = 0; // redundant iteration variable
unsigned diff = 0;
/********** Comparison 1oop **********/
for (i = 0; i < size ; i++) {
diff += userPin[i] #* cardPin[i]);
Jj++;
}

if (j < size) error();

if (diff == 0) {
if (diff '= 0) error();
return BOOL TRUE;

// PIN codes match
// redundant check

}
else // PIN codes differ

return BOOL_EALSE;

return BOOL_FALSE;

}

Attacker’s goal : bypass authentication
check using a wrong userPin

Possible means:
* Loop corruption (O iteration)
* Final check corruption

* Return value corruption




Issue related to software protection

‘\.: l';:%*':\u‘ 7
(@of

Binary code

Source code

unsigned i, 7=0;

for (i=0; i<size; i++) {
foo (i),
F++;

}

if (j<size) error();,



Issue related to software protection

Source code Binary code
unsigned i, ; unsigned i, ;
for (i=0; i<size; i++) { for (i=0; i<size; i++) ({
foo (i), foo (i),



Issue related to software protection

@ty *100)
compiation/optirisation IIEI.)
Source code Binary code
unsigr.led i{ Ui unsigned i, /
for (i=0; i<size; i++) { for (i=0; i<size; i++) ({
foo (i), foo (i),

} } =
s



Issue related to software protection

C | (@t orvomio
Source code Binary code
unsigped i{ Ui unsigned i,,,/’ﬁf
for (i=0; i<size; i++) { for (i=0; i<size; i++) ({
foo (i), foo (i),

} } =7
s

unsigned i;
for (i=0; i<size; i++) {
foo (i) ;

}

i



Issue related to software protection

C | (@t orvomio
Source code Binary code
unsigped i{ Ui unsigned i,,,/’ﬁf
for (i=0; i<size; i++) { for (i=0; i<size; i++) ({
foo (i), foo (i),

} } =7
s

unsigned i;
for (i=0; i<size; i++) {
foo (i) ;

}

i



Issue related to software protection

Source code

Binary code
unsigned i, ; unsigned i, =77 : ;
for (i=0; i<size; i++) for (i=0; i<size; i++) { ‘;n“g‘.‘fg_lf< e ied
foo(i); foo (i) ; {Or (i=0; i<size; i++)
= foo (i) ;
) | . } (1)
|

unsigned 1i;
for (i=0; i<size; i++) {
foo (i) ;

}

i




Issue related to software protection

Source code

Binary code
unsigned i, ; unsigned i, =77 : ;
for (i=0; i<size; i++) { for (i=0; i<size; i++) { ;nswr}fg'lg( e ies
foo (i) ; £00 (i) ; {or (i=0; i<size; i++)
””’ foo (i) ;
} } P \ (1)
|

unsigned 1i;
for (i=0; i<size; i++) {
foo (i) ;

}

1




Issue related to software protection

Source code

Binary code
unsigned i, ; unsigned i,,,/’ﬁ' . .
for (i=0; i<size; i++) for (i=0; i<size; i++) { ‘;n“g‘.‘fg,lf< e ied
foo(i); foo (i) ; {Or (i=0; i<size; i++)
= foo (i) ;
) } P } (1)
|

unsigned i;
for (i=0; i<size; i++) {
foo (i) ;

}

i

9%



Countermeasures

" Principle of software countermeasures
= Data integrity
= Code integrity
= Control-flow integrity
= Limitations
= Compiler-assisted code hardening

* Compilation of an instruction-skip protection

= Compile-time loop hardening

= | imitations



96

Instruction-skip protection at compilation-time

Compilation
= Protection scheme against instruction skip voro et al. 2014]

=  Main principle: duplication of idempotent instructions —J)c

= Take advantage of compilation flow to
= Force the generation of idempotent instructions
=  Modification of the instruction selection

= Modification of the register allocation Instruction

= Additional transformation for remaining non-idempotent instructions , selection
(e.g. push and pop instruction that use and modify the stack pointer) - aﬁiﬁ:’tti‘jn
= Add aninstruction duplication pass “

» Let the scheduler optimize the resulting protected code \dempotence
transformation

= Results in automatically protected code with better code size and performance P nstruction

scheduling

|
o

Q T. Barry et al. Compilation of a Countermeasure Against Instruction-Skip Fault Attacks. CS2 2016.




Compile-time loop hardening e

PhD 2019
+annotations Hardened binary
- | 1
Compiler G:D
[ Loop il
hardening

Objective: Expected iteration count and right exit

Fault models: Instruction skip and register corruption (in the loop)

unsigned 1i;

#pragma sensitive loop

for (i=0; i<size; i++){
foo (i) ;

}
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Compile-time loop hardening

+annotations
e
Compiler
n Loop
hardening

Objective: Expected iteration count and right exit

Fault models: Instruction skip and register corruption (in the loop)

unsigned 1i; unsigned 1i;

#pragma sensitive loop

for (i=0; i<size; i++){ for (i=0; i<size; i++) {
foo (i) ; foo (i) ;

} }

v d
II\I‘“’I“!‘ s [ —

Hardened binary

Y
Z
v -

lip S

PhD 2019
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Compile-time loop hardening e

PhD 2019
+annotations Hardened binary
. 1
Compiler
u Loop
hardening

Objective: Expected iteration count and right exit

Fault models: Instruction skip and register corruption (in the loop)

unsigned 1i; unsigned i, j=0,
#pragma sensitive loop
for (i=0; i<size; i++){ for (i=0; i<size; i++) {
foo (i) ; if (j>=size) error();,
} foo (i)
G+,
}

if (j<size) error();
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Compile-time loop hardening

+annotations
e
Compiler
n Loop
hardening

Objective: Expected iteration count and right exit

Fault models: Instruction skip and register corruption (in the loop)

unsigned 1i; unsigned i, j=0,
#pragma sensitive loop
for (i=0; i<size; i++){ for (i=0; i<size; i++) {
foo (i) ; if (j>=size) error();,
} foo (i)
G+,
}

if (j<size) error();

v d
II\I‘N’I“!‘ s [ —

Hardened binary

unsigned i, j=0,

for (i=0; i<size; i++){

PhD 2019

if (j>=size) error();

foo (i) ;
Jj++;
}

if (j<size) error();,

lip S

SORBONNE
UNIVERSITE

RRRRRRRRRRRRRRR



Compile-time loop hardening

PhD 2019

Target-independant pass in clang/LLVM (LLVM IR level)

Limited overhead in performance and code size (average <20%)

Fault injection simulations : detection rate 99%

Loop hardening
pass

" 1% undetected faults ———
= Harmfull downstream optimisation passes selection |
= Need to desactivate (when possible) or adapt them aﬁiiftt:;n

Compiler-Assisted Loop Hardening Against Fault Attacks s
Q- J. Proy et al. ACM TACO 2017. = S
[ ]

INVIA 5 QSORBONNE I
informatics g mathematics U N I V E R S I T E
&zua,- |

CREATEURS DE FUTURS
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Compile-time loop hardening P ApES

PhD 2019

Target-independant pass in clang/LLVM (LLVM IR level)

= Limited ?/
= Fault inj More effective than source-level protections AT
But
» 1% unde Still needs a binary code analysis to verify that the downstream passes
= Hart did not alter the protection

u Neek

Compiler-Assisted Loop Hardening Against Fault Attacks s
Q- J. Proy et al. ACM TACO 2017. =

| ®
INVIA 4.5z § svashe |
informatics, ‘mathematics U N IV E R s I T E
Osia=—  § UNIVERSITE

5555555555




Agenda

* Fault exploitation

* Fault effects and modelling
* Countermeasures

* Robustness analysis

* Conclusion and perspectives



Robustness analysis at binary level

Need for such analysis
= Binary code : final code, post-hardening, post-compilation

Objective : verify that the application behaves as intended in presence of a fault attack or detects it
= Specification of « intended behaviour » : security property

= Specification of possible faults : fault models
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Example : integrity of the return value of verifyPIN Execution Execution
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Static analysis and symbolic execution Robustness verification
> Initial values
Enumeration of feasible : { vulnerabilities }
Target code region Bin. Info + CFG SR P A — +
g g + Context et piion )
Security property + Loop bounds Enumeration of feasible - v v Metrics
- ey =
FaU|t models faulty executlon paths |Memé)c%xtleor$tastlons| ¢ IMenﬁtlé)ﬁtastlons|
| Z3SMTSolver | ™"
Overview

= Preliminary code analyses

= Determination of feasible execution paths {P; ,.¢/
= For each P, s, determination of faulty feasible faulty execution paths {P; 1, ;}
= Robustness verification (P; e, P; faurty )

=  Metrics summarising all the results (attack surface, attack density, instruction sensitivity)




Formal models for the path feasibility analysis

Feasibility of an execution path P composed of instructions iy, ..., i,

= Satisfiability of P..s (context) = init A inst; A ... A inst,

/nit defines initial variables according to confext (constraints on initial values)
init & ro, = Valo A .. Arl6, = Va/16 AN memf[.] =..

inst; defines new variables (cf. SSA), ifi; = add r4, r2, r3 then

Ith/' 2 f’4,- = I"Z,-_I * I'3,-_1 Afor' all i +4 I")(,- = r')(i-l

Feasibility of a faulty execution path Py, resulting from one fault injection targeting j;
= Satisfiability of
Praus, (context) = init A inst; A .. A inst;_; A fault(inst) A instj.; A ... A inst,
with fault(inst;) depends on the considered fault model:
skip i; & (fault(inst) & Ngyr ay x rX; = rXj.1)
register (rY) corruption right before i; < (fault(inst)) & ry;.; = 222 A inst;)
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Formal models for robustness analysis

Feasibility of an execution path composed of instructions iy, ..., i,

= Satisfiability of ~. - (context)= init A inst;A .. A inst,

Feasibility of a faulty execution path Py, resulting from a fault injection targeting j;

= Satisfiability of
Prauny (context) = init A inst; A .. A insti A fault(inst)) A insti A ... A inst,

Vulnerability search
= Satisfiability of
VULN = P,..r (context) A Pry, (context) A vuin
with
wiin < non-egquivalence of registers and memory locations content
at the end of the execution

Initial values

Registers

Memor?/ locations

S

Reference
Execution

Final values

Registers &
Memory locations #
contents

Faulty %

Execution

Final values

Registers &
Memory locations
contents

\ Security Property/
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Execution Execution .
Enumeration of feasible - v v Metrics
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\ Security Property/‘
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Use-case 1: source-level protected codes (VerifyPIN from FISSC [Dureuil 2016])
1. Effects of compilation options, compiler impact => Metrics help analysing and comparing different versions

2.  Elimination of redundant protections

Use-case 2: compiler-hardened code

1. Hardened loop (memcpy) [Proy et al, ACM TACO 2017] = Effective protection w.r.t considered attacker model

= But one vulnerability due to code placement

1. Compiler-assisted instruction-skip [Barry et al., CS2@HIPEAC2016] = Effective protection w.r.t attacker model

Fault attack vulnerability assessment of
binary code - J-B. Bréjon et al. CS2 2019.
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Use-case 1: source-level protected codes (VerifyPIN from FISSC [Dureuil 2016])

1. Effects of compilation options, compiler impact => Metrics help analysing and comparing different versions

2.  Elimination of redundant protections

Use-case 2: compiler-hardened code

1. Hardened loop (memcpy) [Proy et al, ACM TACO 2017] = Effective protection w.r.t considered attacker model
= But one vulnerability due to code placement

1. Compiler-assisted instruction-skip [Barry et al., CS2@HIPEAC2016] = Effective protection w.r.t attacker model

e &> Fault attack vulnerability assessment of
R binary code - J-B. Bréjon et al. CS2 2019.
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= Expression of functional properties at source-code level (predicates on variables)
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int i;

// sensitive loop

for (i=0; i<size; i++){
foo (i) ;

}

P: attribute (”"i == size”);

= Compilation of these properties in concert with the code (but not included in the code)

= Production of properties in the binary code (in a dedicated section)

Major issue

= Preservation and correctness of properties all the way down in an optimizing compiler

arm Google
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int i;
. . // sensitive loop
Objectlves for (i=0; i<size; i++){
= Expression of functional properties at source-code level (predicates on variables) | foo(1);
— annotations based on ANSI/ISO C Specification Language (ACSL) P: attribute (i == size”):

= Compilation of these properties in concert with the code (but not included in the code)
= Production of properties in the binary code (in a dedicated section)

Major issue

= Preservation and correctness of properties all the way down in an optimizing compiler
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PhD in progress

int i;

// sensitive loop

for (i=0; i<size; i++){
foo (i) ;

}

P: attribute (”"i == size”);

— notion of property preservation (observation point and involved variables and memory locations)

= Production of properties in the binary code (in a dedicated section)

Major issue

= Preservation and correctness of properties all the way down in an optimizing compiler
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Compilation of (security) properties oS
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int i;

// sensitive loop

ObjECtiVES for (i=0; i<size; i++){
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P: attribute (”"i == size”);
= Compilation of these properties in concert with the code (but not included in it)
— notion of property preservation (observation point and involved variables and memory locations)

= Production of properties in the binary code (in a dedicated section)
— debug information - DWARF

Major issue

= Preservation and correctness of properties all the way down in an optimizing compiler

— insertion of barriers i.e I/O & side-effecting instructions to ensure the propagation and preservation
— implemented in clang/LLVM
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code binary code
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annotations - tool
properties
int i;

// sensitive loop

ObjECtiVES for (i=0; i<size; i++){

= Expression of functional properties at source-code level (predicates on variables) } fooli);
— annotations based on ANSI/ISO C Specification Language (ACSL)

P: attribute (”"i == size”);
= Compilation of these properties in concert with the code (but not included in it)
— notion of property preservation (observation point and involved variables and memory locations)

= Production of properties in the binary code (in a dedicated section)
— debug information - DWARF

Major issue

= Preservation and correctness of properties all the way down in an optimizing compiler

— insertion of barriers i.e I/O & side-effecting instructions to ensure the propagation and preservation
— implemented in clang/LLVM

= Validation using 30 tests / 558 annotations from the test suite ACSL/Frama-C
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Protecting the protections =

compiler . PhD in progress
code binary code
+ L. |/ N y analysis
. - “TL -4 N
annotations - tool
properties

= Preservation of protections by expressing properties related to the protections ?
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Protecting the protections

compiler . PhD in progress
binary code

+ I ] ' analysis

. - 4 TV _ =T .
annotations : = - | tool
properties

code

= Expression of functional (observational) properties related to protections
= Preservation of protections = preservation of properties

= Application to 4 protection types : against fault attacks (verifyPIN-like) and against data leakage
(considering AES and RSA)

— Enable to compile and optimize source-level protected code
— Enable to verify presence/effectiveness of protection at binary level

Secure delivery of program properties through optimizing compilation
Q S. T. Vu et al. Compiler Construction 2020.
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= Expressic
® Preserva

= Applicati
(considel

— Enable tx\

Protecting the protections

compiler

. PhD in progress
binary code

; analysis
tool

1. Talk « Secure optimization through opaque observation »

More on this ?

from Son T. Vu at the GT MFS Day — Tuesday, March 16 age

2. Son’s PhD defense planned on Friday, April 2

/

— Enable to verify presence/effectiveness of protection at binary level

arm Google

Secure delivery of program properties through optimizing compilation

Q S. T. Vu et al. Compiler Construction 2020.
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Conclusion
Fault attacks

= Powerful and particularly harmful

Sofware hardening issues

= Related to the hardening process : fault models, sensitive region/assets, design and
combination of protections

= Related to the compilation flow and its optimisations
= Robustness analysis of the final code required

Investigated solutions
= Compile-time code hardening
= Robustness analysis at binary level
= Compilation (propagation and preservation) of properties
= Expression of properties for protecting the protections
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Open questions and research lines

Faults attacks and faults effects

= Availability or potential building of low cost injection means : Riscure!, NewAE?, [Kelly 2020]

Multiple faults are there ! Several temporal ones [Bozzato 2019] & few consecutive instruction skips to
one hundred of consecutive instruction skips ! [Dutertre 2019, Menu 2020]

Many precise faults are highly dangerous : « instruction skip oriented programming » [Péneau 2020]

Complex targets are unprotected and vulnerable [Proy 2019][Trouchkine 2019a] [Trouchkine 2019b]
Precise faults inside the processor induce effects invisible at ISA-level [Laurent 2019]

Countermeasures

Need to take into account the increase in complexity, multiplicity and diversity of faults
Need for protection-aware and/or hardening compilers

HW/SW protection solutions for a better coverage and performance trade-off [ANR COFFI]
Robustness verification methods and tools to help designers / developers

Lhttps://www.riscure.com
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