
Automatic generation of sources lemmas in
Tamarin

Jannik Dreier

joint work with Véronique Cortier and Stéphanie Delaune

GDR Winter School
The Internet – February 10, 2021

1 / 21

Interaction and Automation

Tamarin’s interactive mode allows the user to
inspect and direct proof search

• Gives the flexibility required for complex
case-studies

• Enables fine-tuning of models and proof
strategies

On the downside, Tamarin’s automatic mode often fails
(compared to, e.g., ProVerif), even on relatively simple examples.

One of the main reasons: partial deconstructions.

Our contribution: automatic handling of partial
deconstructions in most cases.

2 / 21

Interaction and Automation

Tamarin’s interactive mode allows the user to
inspect and direct proof search

• Gives the flexibility required for complex
case-studies

• Enables fine-tuning of models and proof
strategies

On the downside, Tamarin’s automatic mode often fails
(compared to, e.g., ProVerif), even on relatively simple examples.

One of the main reasons: partial deconstructions.

Our contribution: automatic handling of partial
deconstructions in most cases.

2 / 21

Plan

1 Introduction

2 Partial deconstructions

3 Algorithm

4 Implementation and evaluation

5 Conclusion

3 / 21

Plan

1 Introduction

2 Partial deconstructions

3 Algorithm

4 Implementation and evaluation

5 Conclusion

4 / 21

Toy example

Consider the following toy protocol between the initiator and
the responder :

1. → : {req, I , n}pk(R)

2. → : {rep, n}pk(I)

In Tamarin the initiator can be modeled using the following rule:

rule Rule_I:

[Fr(n),

!Pk(R, pkR),

!Ltk(I, ltkI)]

--[SecretI(I, R, n)]->

[Out(aenc{’req’, I, n}pkR)]

5 / 21

Toy example

Consider the following toy protocol between the initiator and
the responder :

1. → : {req, I , n}pk(R)

2. → : {rep, n}pk(I)

In Tamarin the initiator can be modeled using the following rule:

rule Rule_I:

[Fr(n),

!Pk(R, pkR),

!Ltk(I, ltkI)]

--[SecretI(I, R, n)]->

[Out(aenc{’req’, I, n}pkR)]

5 / 21

Toy example (Cont’d)

Consider the following toy protocol between the initiator and
the responder :

1. → : {req, I , n}pk(R)

2. → : {rep, n}pk(I)

The responder can be modeled using the following rule:

rule Rule_R:

[In(aenc{’req’, I, x}pk(ltkR)),

!Ltk(R, ltkR),

!Pk(I, pkI)]

--[]->

[Out(aenc{’rep’, x}pkI)]

6 / 21

Toy example (Cont’d)

Consider the following toy protocol between the initiator and
the responder :

1. → : {req, I , n}pk(R)

2. → : {rep, n}pk(I)

Secrecy for the nonce n can be modeled using the following
lemma:

lemma nonce_secrecy:

"not(

Ex A B s #i. SecretI(A, B, s) @ i

& (Ex #j. K(s) @ j)

)"

Unfortunately, the proof of this lemma does not terminate due
to partial deconstructions.

7 / 21

Toy example (Cont’d)

Consider the following toy protocol between the initiator and
the responder :

1. → : {req, I , n}pk(R)

2. → : {rep, n}pk(I)

Secrecy for the nonce n can be modeled using the following
lemma:

lemma nonce_secrecy:

"not(

Ex A B s #i. SecretI(A, B, s) @ i

& (Ex #j. K(s) @ j)

)"

Unfortunately, the proof of this lemma does not terminate due
to partial deconstructions.

7 / 21

Partial deconstructions

Tamarin pre-computes all possible origins
(called sources) of all protocol and intruder
facts.

This can stop in an incomplete stage (called
partial deconstruction) if Tamarin lacks suf-
ficient information about the origins of some
fact(s).

To resolve these partial deconstructions, one has to write a
sources lemma detailing the possible origins of the problematic
fact(s).

Sources lemmas are used to refine the sources, but they also need
to be proven correct.

8 / 21

Partial deconstructions

Tamarin pre-computes all possible origins
(called sources) of all protocol and intruder
facts.

This can stop in an incomplete stage (called
partial deconstruction) if Tamarin lacks suf-
ficient information about the origins of some
fact(s).

To resolve these partial deconstructions, one has to write a
sources lemma detailing the possible origins of the problematic
fact(s).

Sources lemmas are used to refine the sources, but they also need
to be proven correct.

8 / 21

Example: Partial deconstruction

9 / 21

Example: Partial deconstruction

9 / 21

Example: Source lemma

We know that the input is either the message sent by the initiator,
or a message constructed by the intruder.

Need to annotate the protocol rules:

rule Rule_I:

[Fr(n), !Pk(R, pkR),!Ltk(I, ltkI)]

--[I(aenc{’req’, I, n}pkR), SecretI(I, R, n)]->

[Out(aenc{’req’, I, n}pkR)]

rule Rule_R:

[In(aenc{’req’, I, x}pk(ltkR)),
!Ltk(R, ltkR), !Pk(I, pkI)]

--[R(aenc{’req’, I, x}pk(ltkR), x)]->

[Out(aenc{’rep’, x}pkI)]

Source lemma:
lemma typing [sources]:

"All x m #i. R(m,x)@#i ==> ((Ex #j. I(m)@#j & #j < #i)

| (Ex #j. KU(x)@#j & #j < #i))"

10 / 21

Example: Source lemma

We know that the input is either the message sent by the initiator,
or a message constructed by the intruder.

Need to annotate the protocol rules:

rule Rule_I:

[Fr(n), !Pk(R, pkR),!Ltk(I, ltkI)]

--[I(aenc{’req’, I, n}pkR), SecretI(I, R, n)]->

[Out(aenc{’req’, I, n}pkR)]

rule Rule_R:

[In(aenc{’req’, I, x}pk(ltkR)),
!Ltk(R, ltkR), !Pk(I, pkI)]

--[R(aenc{’req’, I, x}pk(ltkR), x)]->

[Out(aenc{’rep’, x}pkI)]

Source lemma:
lemma typing [sources]:

"All x m #i. R(m,x)@#i ==> ((Ex #j. I(m)@#j & #j < #i)

| (Ex #j. KU(x)@#j & #j < #i))"

10 / 21

Example: Source lemma

We know that the input is either the message sent by the initiator,
or a message constructed by the intruder.

Need to annotate the protocol rules:

rule Rule_I:

[Fr(n), !Pk(R, pkR),!Ltk(I, ltkI)]

--[I(aenc{’req’, I, n}pkR), SecretI(I, R, n)]->

[Out(aenc{’req’, I, n}pkR)]

rule Rule_R:

[In(aenc{’req’, I, x}pk(ltkR)),
!Ltk(R, ltkR), !Pk(I, pkI)]

--[R(aenc{’req’, I, x}pk(ltkR), x)]->

[Out(aenc{’rep’, x}pkI)]

Source lemma:
lemma typing [sources]:

"All x m #i. R(m,x)@#i ==> ((Ex #j. I(m)@#j & #j < #i)

| (Ex #j. KU(x)@#j & #j < #i))"
10 / 21

Plan

1 Introduction

2 Partial deconstructions

3 Algorithm

4 Implementation and evaluation

5 Conclusion

11 / 21

Algorithm Idea

Generalize idea & automate the approach:

1 Inspect the raw sources computed by Tamarin

2 For each partial deconstruction:

1 Identify the variables and facts causing the partial
deconstruction

2 Identify rules producing matching conclusions
3 Add necessary annotations to the concerned rules

3 Generate a sources lemma using all annotations and add it
to the theory

Note that Tamarin will verify the correctness of the generated
lemma.

But we actually proved that the lemmas we generate are correct
under some assumptions (well-formed rules, subterm-convergent
equational theory).

12 / 21

Algorithm Idea

Generalize idea & automate the approach:

1 Inspect the raw sources computed by Tamarin

2 For each partial deconstruction:

1 Identify the variables and facts causing the partial
deconstruction

2 Identify rules producing matching conclusions
3 Add necessary annotations to the concerned rules

3 Generate a sources lemma using all annotations and add it
to the theory

Note that Tamarin will verify the correctness of the generated
lemma.

But we actually proved that the lemmas we generate are correct
under some assumptions (well-formed rules, subterm-convergent
equational theory).

12 / 21

How to identify matching conclusions?

First idea
Extract input message and try to unify with all outputs.
• Turns out to be insufficient, consider following example:

• Input: 〈enc(a, k1), enc(b, k2)〉
• Output 1: enc(a, k1)
• Output 2: enc(b, k2)
• Unification fails, but the intruder can easily compose both

outputs

Solution
Use protected subterms:

• A protected subterm is subterm whose head symbol is neither
a pair nor an AC symbol

• Allows us to abstract away pairs

13 / 21

Identifying matching conclusions

Identifying matching conclusions

• Extract the deepest protected subterms containing the
variable causing the partial deconstruction from the facts in
the raw source

Example

t = enc(〈x , enc(〈b, x〉, k2)〉, k1)

has two deepest protected subterms w.r.t. x :

enc(〈b, x〉, k2) and enc(〈x , enc(〈b, x〉, k2)〉, k1)

• Extract all protected subterms from all conclusions of all
rules and try to unify with the deepest protected subterms

• If unification succeeds, we have a match.

14 / 21

Identifying matching conclusions

Identifying matching conclusions

• Extract the deepest protected subterms containing the
variable causing the partial deconstruction from the facts in
the raw source

Example

t = enc(〈x , enc(〈b, x〉, k2)〉, k1)

has two deepest protected subterms w.r.t. x :

enc(〈b, x〉, k2) and enc(〈x , enc(〈b, x〉, k2)〉, k1)

• Extract all protected subterms from all conclusions of all
rules and try to unify with the deepest protected subterms

• If unification succeeds, we have a match.

14 / 21

Identifying matching conclusions

Identifying matching conclusions

• Extract the deepest protected subterms containing the
variable causing the partial deconstruction from the facts in
the raw source

Example

t = enc(〈x , enc(〈b, x〉, k2)〉, k1)

has two deepest protected subterms w.r.t. x :

enc(〈b, x〉, k2) and enc(〈x , enc(〈b, x〉, k2)〉, k1)

• Extract all protected subterms from all conclusions of all
rules and try to unify with the deepest protected subterms

• If unification succeeds, we have a match.

14 / 21

Plan

1 Introduction

2 Partial deconstructions

3 Algorithm

4 Implementation and evaluation

5 Conclusion

15 / 21

Implementation

We implemented the algorithm in Tamarin (available in version
1.6.0).

To enable automatic source lemma generation, run Tamarin
with --auto-sources:

• If partial deconstructions are present and there is no sources
lemma, the algorithm generates a lemma and adds it to the
theory.

• If there is already a lemma, or there are no partial
deconstructions, Tamarin runs as usual.

• If a protocol rule has multiple variants, our algorithms
considers all variants individually.

16 / 21

Case studies: SPORE

We tried numerous examples from the SPORE library:

Protocol Name Partial Dec. Resolved Automatic Time

Andrew Secure RPC 14 42.8s
Modified Andrew Secure RPC 21 134.3s
BAN Concrete Andrew Secure RPC 0 - 10.6s
Lowe modified BAN Andrew Secure RPC 0 - 29.8s
CCITT 1 0 - 0.8s
CCITT 1c 0 - 1.2s
CCITT 3 0 - 186.1s
CCITT 3 BAN 0 - 3.7s
Denning Sacco Secret Key 5 0.8s
Denning Sacco Secret Key - Lowe 6 2.7s
Needham Schroeder Secret Key 14 3.6s
Amended Needham Schroeder Secret Key 21 7.1s
Otway Rees 10 7.7s
SpliceAS 10 5.9s
SpliceAS 2 10 7.3s
SpliceAS 3 10 8.7s
Wide Mouthed Frog 5 0.6s
Wide Mouthed Frog Lowe 14 3.5s
WooLam Pi f 5 0.6s
Yahalom 15 3.1s
Yahalom - BAN 5 0.9s
Yahalom - Lowe 21 2.2s

17 / 21

Case studies: Tamarin repository

We also tested all examples from the Tamarin repository that
contained partial deconstructions:

Name
Partial
Dec.

Resolved Automatic
Time
(new)

Time
(previous)

Feldhofer (Equivalence) 5 3.8s 3.5s
NSLPK3 12 1.8s 1.8s
NSLPK3 untagged 12 - -
NSPK3 12 2.4s 2.2s
JCS12 Typing Example 7 0.3s 0.2s
Minimal Typing Example 6 0.1s 0.1s
Simple RFID Protocol 24 0.7s 0.5s
StatVerif Security Device 12 0.3s 0.4s
Envelope Protocol 9 25.7s 25.3s
TPM Exclusive Secrets 9 1.8s 1.8s
NSL untagged (SAPIC) 18 4.3s 19.9s
StatVerif Left-Right (SAPIC) 18 28.8s 29.6s

TPM Envelope (Equivalence) 9 - - -

5G AKA 240 - - -
Alethea 30 - - -
PKCS11-templates 68 - - -

NSLPK3XOR 24 - - -
Chaum Offline Anonymity 128 - - -
FOO Eligibility 70 - - -
Okamoto Eligibility 66 - - -

18 / 21

Analysis

• For all examples from SPORE, our approach was successful
in resolving the partial deconstructions, and the entire
verification became automatic.

• In most examples from the Tamarin repository, our
approach was also successful, including examples with
equivalence properties or generated by SAPIC. Verification
times were similar to manual source lemmas.

• In some cases the partial deconstructions were resolved but
the rest was not automatic: further intermediate lemmas or
other annotations were required
• Our approach failed for three reasons:

• A too complex equational theory (not subterm convergent,
AC symbols, . . .)

• Partial deconstructions caused by state facts rather than
messages

• Tamarin fails to prove the generated sources lemma

19 / 21

Plan

1 Introduction

2 Partial deconstructions

3 Algorithm

4 Implementation and evaluation

5 Conclusion

20 / 21

Conclusion & Future Work

• Automation in Tamarin often fails because of partial
deconstructions

• Developed & implemented a new algorithm to automatically
generate sources lemmas

• Proved correctness of the generated lemmas

• Algorithm works well in practice, many examples become
fully or at least partly automatic

• Available in Tamarin 1.6.0
• Future work:

• Handle more general equational theories
• Handle partial deconstructions stemming from state facts

(work in progess)

21 / 21

	Introduction
	Partial deconstructions
	Algorithm
	Implementation and evaluation
	Conclusion

