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What to expect



What we will cover

How to have a certified assembly implementation with the associate
security proofs:

• cryptographic correctness
• cryptographic security
• cryptographic constant-time

We will use a very simple example that will allow to cover many
aspects of this.
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What we will use

The EasyCrypt proof assistant:

• Specify syntax and security models for crypto algorithms
• Specify crypto assumptions and concrete crypto algorithms
• Prove crypto algorithms correct and secure

The Jasmin language and compiler:

• Write high-speed crypto code and compile it to assembly
• Automatically safety-check Jasmin programs
• Extract Jasmin to EasyCrypt for correctness/security proofs
• Extract Jasmin to EasyCrypt for constant-time verification
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The example



The example: textbook symmetric encryption from PRF/PRP
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The example: provable security view



The construction in crypto terms

Fix:

• the key space K
• the nonce space N
• the message space M
• the ciphertext space C := M

Let f be a function of type f : K × N → M.

Key generation: sampling uniformly at random from K

Encryption: Enc(k, n, m) := m ⊕ f(k, n)

Decryption: Dec(k, n, c) := c ⊕ f(k, n)
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(Nonce-based) IND$-CPA security

Game IND$-CPA-RealA( )
k ←← K
b ←← ARealEnc(·,·)( )
Return b

proc RealEnc(n, m)
Return Enc(k, n, m)

Game IND$-CPA-IdealA( )
b ←← AIdealEnc(·,·)( )
Return b

proc IdealEnc(n, m)
c ←← C
Return c

Security requires the following advantage measure to be small

AdvCPA(A) =
|Pr [ IND$-CPA-RealA( )⇒ true ]− Pr [ IND$-CPA-IdealA( )⇒ true ] |
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Pseudorandom Functions

Let f be a function of type f : K × N → M.

Game PRF-RealA( )
k ←← K
b ←← Af(k,·)( )
Return b

Game PRF-IdealA( )
T ← {}
b ←← AF(·)( )
Return b

proc F(x):
If x /∈ T : T [x ]←← M
Return T [x ]

F is a truly random function (lazily sampled).

f is pseudorandom if the following advantage measure is small
AdvPRF(A) = |Pr [PRF-RealA( )⇒ true ]− Pr [PRF-IdealA( )⇒ true ] |
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Restrictions on attacker power

We will prove that forall A: AdvCPA(A) = AdvPRF(B(A))

Restrictions that come up explicitly in EasyCrypt:

• Do not place two queries with the same nonce n
• Place at most q oracle queries

Restrictions on attacker power that will be implicit:

• IND$-CPA attacker executes in at most t steps
• we assume that PRF/PRP cannot be broken in ∼ t steps

Those restrictions are not needed to prove the exact security bound,
they are only necessary to prove that the advantage is negligible
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Easycrypt formalization



The example: implementation view



Jasmin: last mile of high assurance cryptography

We want fast and formally verified assembly code:

• Source language: control on the generated assembly + formal
semantics

=⇒ programmer & verification friendly

• Compiler: predictable & formally verified (in Coq)

=⇒ programmer has control and no compiler security bug

• Verification toolchain (based Easycrypt):

• safety
• functional correctness
• security
• constant-time
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Jasmin language / Assembly:

Jasmin is a relatively high level language:

• Variable, array, loop, function call,
• Simple semantic (no alias)

Jasmin provides a strong control on the generated assembly:

• Variable can be tagged as reg/stack

• Access to low level assembly instructions and flags

• Control on loop unrolling: for vs while

• Inlining introduces no extra instruction

• Control over constant propagation/partial evaluation:

inline variables
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Jasmin-code and link with Easycrypt



Take-aways



Main take-aways on Jasmin

Using Jasmin for writing high-speed code:

+ It is a new language for optimized low-level code

+ Programming in Jasmin requires no knowledge of verification

+ Safety of Jasmin programs checked automatically

− Currently we only support x86-64 platforms
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Main take-aways on Jasmin compiler

+ The Jasmin compiler is proved in Coq:

⇒ Functional correctness can be propagate to assembly

+ On going work for preservation of constant time:

⇒ This is not ensured by correctness of the compiler

Jasmin correctness and constant-time:

+ Jasmin correctness in EasyCrypt = standard Hoare logic

+ Jasmin CT in EasyCrypt = mostly automatic
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Main take-aways on EasyCrypt

+ Specifying crypto in EC requires no knowledge of verification

+ Specifying game-hops in EC requires no knowledge of verification

− Proofs are not automatic, although some automation exists

− Multidisciplinary team required for getting end-to-end results
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Thank you for attending!
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