
EasyCrypt and Jasmin Tutorial
Cyber in Saclay school

Manuel Barbosa (mbb@fc.up.pt)
Benjamin Grégoire (benjamin.gregoire@inria.fr)
François Dupressoir (f.dupressoir@bristol.ac.uk)
Vincent Laporte (vincent.laporte@inria.fr)
Pierre-Yves Strub (pierre-yves@strub.nu)
February 11th 2021

1

2

What to expect

What we will cover

How to have a certified assembly implementation with the associate
security proofs:

• cryptographic correctness
• cryptographic security
• cryptographic constant-time

We will use a very simple example that will allow to cover many
aspects of this.

3

What we will use

The EasyCrypt proof assistant:

• Specify syntax and security models for crypto algorithms
• Specify crypto assumptions and concrete crypto algorithms
• Prove crypto algorithms correct and secure

The Jasmin language and compiler:

• Write high-speed crypto code and compile it to assembly
• Automatically safety-check Jasmin programs
• Extract Jasmin to EasyCrypt for correctness/security proofs
• Extract Jasmin to EasyCrypt for constant-time verification

4

What we will use

The EasyCrypt proof assistant:

• Specify syntax and security models for crypto algorithms
• Specify crypto assumptions and concrete crypto algorithms
• Prove crypto algorithms correct and secure

The Jasmin language and compiler:

• Write high-speed crypto code and compile it to assembly
• Automatically safety-check Jasmin programs
• Extract Jasmin to EasyCrypt for correctness/security proofs
• Extract Jasmin to EasyCrypt for constant-time verification

4

The example

The example: textbook symmetric encryption from PRF/PRP

5

The example: provable security view

The construction in crypto terms

Fix:

• the key space K
• the nonce space N
• the message space M
• the ciphertext space C := M

Let f be a function of type f : K × N → M.

Key generation: sampling uniformly at random from K

Encryption: Enc(k, n, m) := m ⊕ f(k, n)

Decryption: Dec(k, n, c) := c ⊕ f(k, n)

6

(Nonce-based) IND$-CPA security

Game IND$-CPA-RealA()
k ←← K
b ←← ARealEnc(·,·)()
Return b

proc RealEnc(n, m)
Return Enc(k, n, m)

Game IND$-CPA-IdealA()
b ←← AIdealEnc(·,·)()
Return b

proc IdealEnc(n, m)
c ←← C
Return c

Security requires the following advantage measure to be small

AdvCPA(A) =
|Pr [IND$-CPA-RealA()⇒ true]− Pr [IND$-CPA-IdealA()⇒ true] |

7

Pseudorandom Functions

Let f be a function of type f : K × N → M.

Game PRF-RealA()
k ←← K
b ←← Af(k,·)()
Return b

Game PRF-IdealA()
T ← {}
b ←← AF(·)()
Return b

proc F(x):
If x /∈ T : T [x]←← M
Return T [x]

F is a truly random function (lazily sampled).

f is pseudorandom if the following advantage measure is small
AdvPRF(A) = |Pr [PRF-RealA()⇒ true]− Pr [PRF-IdealA()⇒ true] |

8

Restrictions on attacker power

We will prove that forall A: AdvCPA(A) = AdvPRF(B(A))

Restrictions that come up explicitly in EasyCrypt:

• Do not place two queries with the same nonce n
• Place at most q oracle queries

Restrictions on attacker power that will be implicit:

• IND$-CPA attacker executes in at most t steps
• we assume that PRF/PRP cannot be broken in ∼ t steps

Those restrictions are not needed to prove the exact security bound,
they are only necessary to prove that the advantage is negligible

9

Restrictions on attacker power

We will prove that forall A: AdvCPA(A) = AdvPRF(B(A))

Restrictions that come up explicitly in EasyCrypt:

• Do not place two queries with the same nonce n
• Place at most q oracle queries

Restrictions on attacker power that will be implicit:

• IND$-CPA attacker executes in at most t steps
• we assume that PRF/PRP cannot be broken in ∼ t steps

Those restrictions are not needed to prove the exact security bound,
they are only necessary to prove that the advantage is negligible

9

Restrictions on attacker power

We will prove that forall A: AdvCPA(A) = AdvPRF(B(A))

Restrictions that come up explicitly in EasyCrypt:

• Do not place two queries with the same nonce n
• Place at most q oracle queries

Restrictions on attacker power that will be implicit:

• IND$-CPA attacker executes in at most t steps
• we assume that PRF/PRP cannot be broken in ∼ t steps

Those restrictions are not needed to prove the exact security bound,
they are only necessary to prove that the advantage is negligible

9

Easycrypt formalization

The example: implementation view

Jasmin: last mile of high assurance cryptography

We want fast and formally verified assembly code:

• Source language: control on the generated assembly + formal
semantics

=⇒ programmer & verification friendly

• Compiler: predictable & formally verified (in Coq)

=⇒ programmer has control and no compiler security bug

• Verification toolchain (based Easycrypt):

• safety
• functional correctness
• security
• constant-time

10

Jasmin language / Assembly:

Jasmin is a relatively high level language:

• Variable, array, loop, function call,
• Simple semantic (no alias)

Jasmin provides a strong control on the generated assembly:

• Variable can be tagged as reg/stack

• Access to low level assembly instructions and flags

• Control on loop unrolling: for vs while

• Inlining introduces no extra instruction

• Control over constant propagation/partial evaluation:

inline variables
11

Jasmin-code and link with Easycrypt

Take-aways

Main take-aways on Jasmin

Using Jasmin for writing high-speed code:

+ It is a new language for optimized low-level code

+ Programming in Jasmin requires no knowledge of verification

+ Safety of Jasmin programs checked automatically

− Currently we only support x86-64 platforms

12

Main take-aways on Jasmin compiler

+ The Jasmin compiler is proved in Coq:

⇒ Functional correctness can be propagate to assembly

+ On going work for preservation of constant time:

⇒ This is not ensured by correctness of the compiler

Jasmin correctness and constant-time:

+ Jasmin correctness in EasyCrypt = standard Hoare logic

+ Jasmin CT in EasyCrypt = mostly automatic

13

Main take-aways on Jasmin compiler

+ The Jasmin compiler is proved in Coq:

⇒ Functional correctness can be propagate to assembly

+ On going work for preservation of constant time:

⇒ This is not ensured by correctness of the compiler

Jasmin correctness and constant-time:

+ Jasmin correctness in EasyCrypt = standard Hoare logic

+ Jasmin CT in EasyCrypt = mostly automatic

13

Main take-aways on EasyCrypt

+ Specifying crypto in EC requires no knowledge of verification

+ Specifying game-hops in EC requires no knowledge of verification

− Proofs are not automatic, although some automation exists

− Multidisciplinary team required for getting end-to-end results

14

Thank you for attending!

	What to expect
	The example
	The example: provable security view
	Easycrypt formalization
	The example: implementation view
	Jasmin-code and link with Easycrypt
	Take-aways
	Thank you for attending!

