Cryptographic Constant-Time Verification
of C programs by Abstract Interpretatior

David Pichardie

&S ©:IRISA Lreia

rennes

Cache timing attacks

- Common side-channel: Cache timing attacks
- Exploit the latency between cache hits and misses
» Attackers can recover cryptographic keys

- Tromer et al (2010), Gullasch et al (2011) show efficient attacks on AES
implementations

- Based on the use of look-up tables

* Access to memory addresses that depend on the key

—— — = N
| I ‘]
1 | p—
— | m /} 3)
, ’ n ' -]r t, [N N /
— | i) ' ‘ ‘(A |
y B BB |\ Ve
/4] : ; | 1 ey "' 3 :
(| 4| B || B NI XS
'\ - @ = / B

Constant-time programs

Characterization

- Constant-time programs do not:

* branch on secrets
 perform memory accesses that depend on secrets

 There are constant-time implementations of many cryptographic
algorithms: AES, DES, RSA, etc

P i
A | e 138 =
s " | r l | !]ﬁ] ./hw(i =7
| | =
@i} | ‘U | “ ’ (/ d’.1 {\,Q,\ :
8 B || B PN
' ; N i) L¥ =].)(‘Ii's}(/
N ‘:-*'f:? w —- }:;,sw o » (

Constant-time programs

Example

Constant-time programs

Example

boolean testPIN(int code[]) {
for (int 1=0; 1<N; 1++) {
1t (code[1] !'= secret[1]) return false;

¥

return true;

¥

Constant-time programs

Example

boolean testPIN(int code[]) {

for (int 1=0; 1<N; 1++) {

1f (code[1] != secret[1]) return false; x
¥
return true;

Not constant-time

¥

Constant-time programs

Example

boolean testPIN(int code[]) {
for (int 1=0; 1<N; 1++) {
1t (code[1] !'= secret[1]) return false;

¥

return true;

¥

Not constant-time

boolean testPIN(int code[]) {
int diff = 0;
for (int 1=0; 1<N; 1++) {
diff = diff | (code[1] A secret[1]);

ks
return (diff == 0);

Constant-time programs

Example

boolean testPIN(int code[]) {

for (int 1=0; 1<N; 1++) {

1f (code[1] != secret[1]) return false; x
¥
return true;

Not constant-time

¥

boolean testPIN(int code[]) {
int diff = 0;
for (int 1=0; 1<N; 1++) {

diff = diff | (code[1] A secret[1]); ‘.."”’>
ks

return (diff == 0);
¥ Constant-time

4

This lecture

1. Presentation of recent works on the topic
2. Introductory course on abstract interpretation

3. Back to recent research works and conclusion

Verification of constant-time programs

Challenges

* Provide a mechanism to formally check that a program is constant-time
- static tainting analysis for implementations of cryptographic algorithms

- At low level implementation (C, assembly), advanced static analysis is
required

» secrets depends on data, data depends on control flow, control flow
depends on data...

* A high level of reliability is required
- semantic justifications, Coq mechanizations...

» Attackers exploit executable code, not source code
* We need guaranties at the assembly level using a compiler toolchain

Sackground: verifying a compiler

CompCert, a moderately optimizing C compiler usable for critical embedded
software

= compiler + proof that the compiler does not introduce bugs

Using the Coq proof assistant, X. Leroy proves the following semantic
preservation property:

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,

then «C behaves like S».

Sackground: verifying a compiler

CompCert, a moderately optimizing C compiler usable for critical embedded
software

= compiler + proof that the compiler does not introduce bugs

Using the Coq proof assistant, X. Leroy proves the following semantic
preservation property:

For all source programs S and compiler-generated code C,
if the compiler generates machine code C from source S,
without reporting a compilation error,

then «C behaves like S».

does not deal with the
constant-time security property !

CompCert: 1 compiler, 11 languages

side-effects out
of expressions

type elimination
loop simplificatiorg,

>

Optimizations: constant prop., CSE, tail calls,

(LCM), (software pipelining) of «&»variables

stack allocationl

CFG construction instruction
<EXpr. decomp. - < selection
register (instruction scheduling)
allocation (IRC)
linearization spilling, reloading
of the CFG - calling conventlong
) =
layout of
stack frames
asm code

CompCert: 1 compiler, 11 languages

side-effects out
of expressions

Compcert C J

Optimizations: constant prop., CSE, tail calls,
(LCM), (software pipelining)

CFG construction

RTL J < &Xpr. decomp.
register
allocation (IRC)
linearization
LTL of the CFG >

Where should we perform
the constant time
analysis ?

1 — —

type elimination

>

Clight J loop simplifications

C#minor J

stack allocation
of «&»variables

instruction

CminorSel |«

LTLin

selection :
Cminor

(instruction scheduling)

spilling, reloading :)

J calling conventiong Linear J

layout of
stack frames
asm code
generation

ASM J(

Mach J
8

Our approach

1. Analyse the program at source level
-
Sandrine Blazy, David Pichardie, Alix Trieu.

Verifying Constant-Time Implementations by Abstract Interpretation.
ESORICS 2017.

2. Make the compiler preserve the property

&
G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, A. Trieu.

Formal verification of a constant-time preserving C compiler.
POPL 2020.

Constant-time analysis at source level

-

Sandrine Blazy, David Pichardie, Alix Trieu.
Verifying Constant-Time Implementations by Abstract Interpretation.

ESORICS 2017.

Compcert C

Cminor

We perform static analysis at (almost) C level Verasco static

analyzer + tainting

* Based on previous work with a value
analyser, Verasco

* We mix Verasco memory tracking with fine-
grained tainting Mach

- Main difficulty : alias analysis taking into <86
account pointer arithmetic o G ey

RTL

LTL

Cf next part on Abstract Interpretation

10

2reserving the property through compilation

@

G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, A. Trieu.
Formal verification of a constant-time preserving C compiler.
POPL 2020.

- Makes precise what secure compilation means for cryptographic constant-time

- Provides a machine checked-proof that a mildly modified version of the CompCert
compiler preserves cryptographic constant-time

- Explains how to turn a pre-exisiting formally-verified compiler into a formally-
verified secure compiler

+ Provides a proof toolkit for proving security preservation with simulation diagrams
11

CompCert: 1 compiler, 11 languages

side-effects out
of expressions

Compcert C J

Optimizations: constant prop., CSE, tail calls,
(LCM), (software pipelining)

CFG construction

RTL J < EXpr. decomp.
register
allocation (IRC)
linearization
LTL of the CFG >

>

type elimination

Clight J loop S|mpI|f|cat|on)s CH#minor J
stack allocation
of «&»variables
instrucjcion
CminorSel J< selection Cminor J
(instruction scheduling)
spilling, reloading : D
TLin J calling conven’uon& Linear J
layout of
stack frames
asm co_de
ASM J(generation Mach J
12

CompCert preservation proof methodology

- Each langage is given an that models a small step
transition from a state s to a state s’ by emitting a trace of external events t.

« From this stems a notion of (event trace) for complete
(possibly infinite) executions.

- Behavior preservation is proved via backward and forward simulation, but thanks
to langage determinism, IS enough.

13

CompCert preservation proof methodology

- Each langage is given an that models a small step
transition from a state s to a state s’ by emitting a trace of external events t.

« From this stems a notion of (event trace) for complete
(possibly infinite) executions.

- Behavior preservation is proved via backward and forward simulation, but thanks
to langage determinism, IS enough.

f
S| —— 8
simulation relation gESE
o)
target state

13

CompCert preservation proof methodology

- Each langage is given an that models a small step
transition from a state s to a state s’ by emitting a trace of external events t.

« From this stems a notion of (event trace) for complete
(possibly infinite) executions.

- Behavior preservation is proved via backward and forward simulation, but thanks
to langage determinism, IS enough.

f
S| ——— 8
simulation relation g ®

|

: t :
Op—> 0
target state

13

CompCert preservation proof methodology

- Each langage is given an that models a small step
transition from a state s to a state s’ by emitting a trace of external events t.

« From this stems a notion of (event trace) for complete
(possibly infinite) executions.

- Behavior preservation is proved via backward and forward simulation, but thanks
to langage determinism, IS enough.

r
= TN

“2Witht= E

simulation relation g ~ o e
— and m(Sz) < m(Sl)
O —— 0y o
well founded measure

13

CompCer

17 preservations proofs

Compiler pass

Cshmgen
Cminorgen
Selection
RTLgen
Tailcall
Inlining
Renumber
ConstProp
CSE
Deadcode
Allocation
Tunneling
Linearize
CleanuplLabels
Debugvar
Stacking
Asmgen

Explanation on the pass

Type elaboration, simplification of control
Stack allocation

Recognition of operators and addr. modes
Generation of CFG and 3-address code
Tailcall recognition

Function inlining

Renumbering CFG nodes

Constant propagation

Common subexpression elimination
Redundancy elimination

Register allocation

Branch tunneling

Linearization of CFG

Removal of unreferenced labels
Synthesis of debugging information
Laying out stack frames

Emission of assembly code

14

Cryptographic constant-time property:
defining leakages

* We enrich the CompCert traces of events with of two
types
- either the truth value of a condition,

* Or a pointer representing the address of
- either a memory access (i.e., a load or a store)

« or a called function

: 4
- Using , from s — s’ we can extract

. . t /
- the compile-only judgment s —>comp

- the leak-only judgment s —t>|eak s’

IS defined as the behavior of the —jggk
semantics

15

Cryptographic constant-time property:
poreservation

- We note ¢(s, s') the fact that two initial states s and s’ share the same
values for public inputs, but may differ on the values of secret inputs

- A program is If for two initial states s
and s’ such that ¢(s, s’) holds, then both leak-only executions starting
from s and s’ observe the same leakage

a ; _ Implies /=7
leak

16

Cryptographic constant-time property:
poreservation

- We note ¢(s, s') the fact that two initial states s and s’ share the same
values for public inputs, but may differ on the values of secret inputs

- A program is If for two initial states s
and s’ such that ¢(s, s’) holds, then both leak-only executions starting
from s and s’ observe the same leakage

&
Let P be a safe

Clight source program that is compiled into an x86 assembly program P".
If P is constant-time w.r.t. @, then so is P’.

16

Take-away message

Take-away message

@ N (Q)Static analysis

» Abstract Interpretation can secure
program art source level

Take-away message

@ N (Q)Static analysis

» Abstract Interpretation can secure
program art source level

- But we must make sure the
compiler will preserve the security

policy

Take-away message

@ N (Q)Static analysis

» Abstract Interpretation can secure
program art source level

- But we must make sure the
compiler will preserve the security

policy

Take-away message

@ N (Q)Static analysis

» Abstract Interpretation can secure

program art source level

Compiler

v
- Let’s start the Abstract
Interpretation lecture! EXE

- But we must make sure the
compiler will preserve the security

policy

Abstract Interpretation (an introduction)

Static program analysis

The goals of static program analysis
> to prove properties about the run-time behaviour of a program
> in a fully automatic way
> without actually executing this program

Applications
> code optimisation
> error detection (array out of bound access, null pointers)

> proof support (invariant extraction)

Abstract Interpretation

[Cousot&Cousot 75, 76, 77, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 00,
01, 02, 03, 04, 05, 06, 07,08,09,10,11,... 1"

Patrick Cousot Radhia Cousot
A theory which unifies a large variety of static analysis
> formalises the approximated analyse of programs

> allows to compare relative precision of analyses
> facilitates the conception of sophisticated analyses

1. See http://www.di.ens. fr/~cousot/

http://www.di.ens.fr/~cousot/

Static analysis computes approximations 2

> Pissafe w.r.t. ¢; and the analyser proves it
[PINg: =0 [PI*" Ny =0

> Pis unsafe w.r.t. ¢, and the analyser warns
about it

[PINnd,#0 [PTPP N by # 0

> but P is safe w.r.t. ¢3 and the analyser can’t
prove it (this is called a false alarm)

[Peeee [PINds =0 [PI*"** N3 #0

[P]: concrete semantics (e.g. set of reachable states) (not computable)
&1, $2, d3: erroneous/dangerous set of states (computable)
[P]F¥™ : analyser result (here over-approximation) (computable)

2. see https://www.di.ens.fr/-cousot/AI/IntroAbsInt.html

https://www.di.ens.fr/~cousot/AI/IntroAbsInt.html

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{ }
while (x<6) {
if () {
{ }
y = y+2;
{ }
};
{
X = X+1;
{
}

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{(0,0) }
while (x<6) {
if () {
{ }
y = y+2;
{ }
};
{
X = X+1;
{
}

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{(0,0) }
while (x<6) {
if () {
{(0,0) }
y = y+2;
{ }
};
{
X = X+1;
{
}

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{(0,0) }
while (x<6) {
if () {
{(0,0) }
y = y+2;
{(0,2) }
};
{
X = X+1;
{
}

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics x=0; y=0;
> A state property is a subset in P(Z?)) {(0,0) 4
of (%,y) values. while (x<6) {
if M {
> When a point is reached for a second {(0,0))
time we make an union with the y = y42;
previous property. {0,2) }
> We “execute” the program until b
stability {(0,0), (0,2) }
X = X+1;

> It may take an infinite number of
steps... { }

> But the limit always exists
(explained later)

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{(0,0)
while (x<6) {
if () {
{(0,0)
y = y+2;
{(0,2)
};
{(0,0), (0,2)
X = X+1;
{(1,0),(1,2)
}

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;

{(0,0),(1,0),(1,2)

while (x<6) {

if (™ {

{(0,0)
y = y+2;

{(0,2)

};
{(0,0),(0,2)

X = X+1;
{(1,0),(1,2)

}

)

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{(0,0),(1,0),(1,2) }
while (x<6) {
if () {
{(0,0),(1,0),(1,2) '}
y = y+2;

{(0,2) }
};
{(0,0),(0,2)
X = X+1;
{(1,0),(1,2)
}

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{(0,0),(1,0),(1,2)
while (x<6) {
if () {
{(0,0),(1,0),(1,2)
y = y+2;
{(0,2),(1,2),(1,4)

};
{(0,0),(0,2)
X = X+1;
{(1,0),(1,2)
}

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{(0,0),(1,0),(1,2) }
while (x<6) {
if () {
{(0,0),(1,0),(1,2) }
y = y+2;
{(0,2),(1,2),(1,4) }
};
{(0,0),(0,2),(1,0),(1,2), (1,4)
X = X+1;
{(1,0),(1,2)

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{(0,0),(1,0),(1,2) }
while (x<6) {
if () {
{(0,0),(1,0),(1,2) }
y = y+2;
{(0,2),(1,2),(1,4) }
};
{(0,0),(0,2),(1,0),(1,2), (1,4)
X = X+1;
{(1,0),(1,2),(2,0),(2,2),(2,4)

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Collecting semantics

> A state property is a subset in P(Z?)
of (x,y) values.

> When a point is reached for a second
time we make an union with the
previous property.

> We “execute” the program until
stability

> It may take an infinite number of
steps...

> But the limit always exists
(explained later)

x=0;y=0;
{(0,0),(1,0),(1,2),...}
while (x<6) {

if () {
{(0,0),(1,0),(1,2),...}
y = y+2;

{(0,2),(1,2),(1,4),...}
};
{(0,0),(0,2),(1,0),(1,2),(1,4),...}
X = X+1;
{(1,0),(1,2),(2,0),(2,2),(2,4),...}

{(6,0),(6,2),(6,4),(6,6),...}

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C = <I<|=[>]>
> To stay in the domain of selected

properties, we over-approximate the
concrete properties.

x=0;y=0;
x=0ANy=0
while (x<6) {
if (M {
y = y+2;

b

X = x+1;

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C = <I<|=[>]>
> To stay in the domain of selected

properties, we over-approximate the
concrete properties.

x=0;y=6;
x=0ANAy=0
while (x<6) {
if (M {
x=0ANAy=0
y = y+2;

b

X = x+1;

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C = <I<|=[>]>
> To stay in the domain of selected

properties, we over-approximate the
concrete properties.

x=0;y=6;
x=0ANAy=0
while (x<6) {
if (M {
x=0ANAy=0
y = y+2;
x =0 /\ ¥ > 0 over-approximation!
};
X = x+1;

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C = <I<|=[>]>
> To stay in the domain of selected

properties, we over-approximate the
concrete properties.

x=0;y=0;
x=0ANAy=0
while (x<6) {
if (M {
x=0ANAy=0
y = y+2;
x=0Ay>0
b
x=0ANy=>0
X = x+1;
}

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C <I<l=I>I>

> To stay in the domain of selected
properties, we over-approximate the
concrete properties.

x=0;y=6;
x=0ANAy=0
while (x<6) {
if (M {
x=0ANAy=0
y = y+2;
x=0Ay>0
};
x=0ANy=>0
X = X+1;

x >0 /Ay > 0 over-approximation!

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C = <I<|=[>]>
> To stay in the domain of selected

properties, we over-approximate the
concrete properties.

x=0;y=6;
x>0 ANy>0
while (x<6) {
if (M {
x=0ANAy=0
y = y+2;
x=0Ay>0
};
x=0ANAy=>0
X = X+1;
x>0ANy=>0

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C = <I<|=[>]>
> To stay in the domain of selected

properties, we over-approximate the
concrete properties.

x=0;y=6;

x>0 ANy=>0
while (x<6) {
if (M {

x>0 ANy>0

y = y+2;

x=0Ay>0
};

x=0ANAy=>0
X = X+1;

x>0ANy=>0

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C = <I<|=[>]>
> To stay in the domain of selected

properties, we over-approximate the
concrete properties.

x=0;y=6;

x>0 ANy=>0
while (x<6) {
if (M {

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C = <I<|=[>]>
> To stay in the domain of selected

properties, we over-approximate the
concrete properties.

x=0;y=6;

x>0 ANy=>0
while (x<6) {
if (M {

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation

> The set of manipulated properties
may be restricted to ensure
computability of the semantics.
Example : sign of variables

P == xCO0OAyCO
C = <I<|=[>]>
> To stay in the domain of selected

properties, we over-approximate the
concrete properties.

x=0;y=6;

x>0 ANy=>0
while (x<6) {
if (M {

A flavor of abstract interpretation

Abstract interpretation executes programs on state properties instead of states.

Approximation x=0y =0
x>20ANy=>0
> The set of manipulated properties while (x<6) {
may be restricted to ensure if (M {
computability of the semantics. x>0 Ay=>0
Example : sign of variables y = y+2;
x>0 ANy>0
P == xCO0OAyCO }:
C = <I<|=[>]> x=20Ay>=0
X = x+1;
> To stay in the domain of selected x>0Ay=>0
properties, we over-approximate the 3

concrete properties. x>20Ay=>0

An other example : the interval analysis

For each point k and each numeric variable x, we infer an interval in which x must
belong to.

Example : insertion sort, array access verification

assume(T.length=100); i=1;
{i € [1,100]}
while (i<T.length) {
{i € [1,991}
p = T[il; j = i-1;
{iell,99], j € [-1,98]}
while (0<=j and T[j]l>p) {
{i €1,99, j € [0,98]}
T[j1=T[j+11; j = j-1;
{ie1,99], e [-1,971}
};
{iel1,99], j € [-1,98]}
T[j+1]=p; i = i+1;
{i € 2,100, j = [-1,98]}

{i =100}

An other example : the polyhedral analysis

For each point k and we infer invariant linear equality and inequality relationships
among variables.

Example : insertion sort, array access verification

assume(T.length>=1); i=1;
{1 <i< T.length}
while i<T.length {
{1 <i<Tlength—1}
p = T[il; j = i-1;
1<i<Tlength—1 N -1<j<i—1}
while 0<=j and T[jl>p {
(I1<i<Tlength—1 N0<j<i—1}
T[j1=T[j+11; j = j-1;
1<i<Tlength—1 N -1<j<i—2}
};
1<i<Tlength—1 N -1<j<i—1}
T[j+1]=p; i = i+1;
2<i<Tlength+1 N =1<j<i—2}

{i = T.length}

This lecture

© Introduction

© Intermediate representation : syntax and semantics
@ Collecting semantics

© Just putsome f...

© Building a generic abstract interpreter

@ Numeric abstraction by intervals

@ Widening/Narrowing

@ Polyhedral abstract interpretation

@ Readings

Outline

© Intermediate representation : syntax and semantics

A flowchart representation of program

The standard model of program in static analysis is control flow graph.
The graph model used here :
> the nodes are program point k € IP,

> the edges are labeled with basic instructions

Instr == x := Exp assignment
| nop
| assume Test execution continues only if
the test successes

(Exp and Test to be defined in the next slide)
> formally a cfg is a couple (kinit, S)with
> kinit € IP : the entry point,
> S C P x Instr x P the set of edges.

Remark : data-flow analyses are generally based on other versions of control
flow graph (nodes are put in instructions).

Example

x = read_input ()
if x<0 {
while (x<0) x++
y = X
} else {
y =0
}

Expression and test language for today
In OCaml syntax
We will restrict our study to a simple numeric subset of Java expressions

type binop =
| Add | Sub | Mult

type expr =
| Const of int
| Var of var
| Binop of binop * expr * expr

type comp = Eq | Neq | Le | Lt

type test =
| Cond of expr * comp * expr (x e; cmp ez *)
| And of test * test (x 11 && tr *)
| Or of test * test (+ t1 || o =)
type instr =
| Nop
| Forget of var (+ x 1= 7 %)
| Assign of var * expr (+ x := ¢ %)
|

Assume of test (% assume t =)

Semantics

Semantic domains

Env = V—oZ
State < P x Env

Semantics of expressions (standard then omitted)
Allelp € Z, ec Exp, p € Env
Semantics of tests (standard then omitted)

Bltlp e B, teTest, p € Env

Small-step semantics of cfg

We first define the semantics of instructions : - C Env x Env

ve” W
px::? p[x'_>v} pE}p[X'—)-A[[a]]p] p;p

Then a small-step relation — ., C State x State for a cfg = (Kkinit, S)

(kiik) €S p1 = po
(k1, P1) =y (k2, p2)

Reachable states for control flow graphs

[efgl ={ (k,p) | 3po € Env, (kinit, po) —3, (k,) }

where cfg = (kinit, S)

Starting from an other semantics?

Remark : for the purpose of the talk, we directly start with a cfg-semantics.

We could have started from a more conventionnal operational semantics.
See

> Patrick Cousot, MIT Course 16.399 : Abstract Interpretation,
http://www.mit.edu/~cousot/

» David Cachera and David Pichardie. A certified denotational abstract
interpreter. In Proc. of ITP-10, 2010.

http://www.mit.edu/~cousot/

Outline

@ Collecting semantics

Collecting Semantics

We will consider a collecting semantics that give us the set of reachable states
[P]>" at each program points k.

vke P, [pI ={p!(kp) € [p]}

Theorem

|[p]]ml may be characterized as the least fixpoint of the following equation system.

Vk € labels(p), X, = X" U) [l (Xi)
(k’/ik)ep

. Env ifk =k
: nit __ init
with X, = { 0 otherwise
and

Vi € Instr, ¥X C Eno, [i] (X) = { 021301 € X, o1 5 05 } — post H (X)

Example

For the following program, [P is the least solution of the following

equation system :

Env

[x =21 (Xo)

[x < 0] (X1) U Xy
[x < 0] (X2)
[x:=x+1](X3)
[x > 0] (X2)

[v == x] (X5)

[x > 0] (X1)

[y :=0] (X7)

Xe U Xg

Fixpoint Lattice Theory

Theorem (Knaster-Tarski)

In a complete lattice (A, C,| |), for all monotone functions
f € A— A, the least fixpoint Ifp(f) of f exists and is
MixeAlf(x) C

Theorem (Kleene fixpoint theorem)

In a complete lattice (A, C,| |), for all continuous function
feA— A, the least ﬁxpomt lfp(f) of f is equal to
L") [ne N

Theorem

Let (A, C) a poset that verifies the ascending chain condition
and f a monotone function. The sequence
L f(L), ..., f"(L),... eventually stabilises. Its limit is the

least fixpoint of f.

{x|f(x) Cx}

{x|xCf(x))

Collecting semantics and exact analysis

The (Xx);_; y are hence specified as the least solution of a fixpoint equation
system

X =F(X1,Xo,...,XN) , k € labels(p)
or, equivalently X = F(X).

Exact analysis :

» Thanks to Knaster-Tarski, the least solution exists (complete lattice, Fy are
monotone functions),

> Kleen fixpoint theorem (Fj are continuous functions) says it is the limit of

Xp=0, X{* =F(X}, X5,..., XY)

Uncomputable problem :
> Representing the X; may be hard (infinite sets)

» The limit may not be reachable in a finite number of steps

20

Approximate analysis

Exact analysis :

Least solution of X = F(X) in the complete lattice (P(Env)Y, C,U,N)
or limit of X° = I, X" = F(X")

Approximate analysis :
> Static approximation : we replace the concrete lattice (P(Env), C,U,N) by
an abstract lattice (L, T4, L, 1f)
> whose elements can be (efficiently) represented in computers,
> in which we know how to compute L, ¥, C%, ...
and we “transpose” the equation X = F(X) of P(Env)N into (L*)N.
» Dynamic approximation : when L does not verifies the ascending chain
condjition, the iterative computation may not terminate in a finite number

of steps (or sometimes too slowly). In this case, we can only approximate
the limit (see widening/narrowing).

21

Outline

© Just putsome f...

22

Just put some *...

From P(Env) to Env*

control flow graph collecting semantics abstract semantics
X, = Emw X5 = TL.
X = [x:=20(X) X = =20 (XD
X, [x<0l(X)UX, X! = [x<O]f(xf)Ltx!
X; = [x<0](X,) X: = [x<o0]f (X))
X, = Ix=x+11(X;) XxXi = [x:=x+1]° (X))
Xs = [x>0](X,) X = [x=0] (X))
Xo = [y=x1(X5) X: o= y=x]F(xf)
X, = [x>01(X,) Xt = x>0 (X
Xy = [y:=0](X;) Xt = [y=0] (X}
Xy = XUXq X = Xgl_lﬁxg

23

Abstract semantics : the ingredients

> A lattice structure (Eno?, C5 0% rE ETE

—Env’

> C! isan approximation of C

=Eno
> L is an approximation of U
> %, is an approximation of N
> LZW is an approximation of ()
> T% isan approximation of Env

> Forallx eV,

[x :=?]* € Env* — Env* an approximation of [x :=?]]
» Forallx € V,e € Exp,

[x := e]* € Env* — Env* an approximation of [[x := e]
» For all t € Test,

[£]* € Env* — Env® an approximation of [[{]

> A concretisation y € Env® — P(Env) that explains which property
v(x*) € P(Env) is represented by each abstract element x¥ € Envt.

24

An abstraction by signs

T
/ \ 1 represents the property

0 +o — represents the property

0 represents the property

/ \ / \ + represents the property
- 0 + —o represents the property
\ ‘ / +o represents the property
1 T represents the property

Envt £V — Sign : a sign is associated to each variable.

U
{z]z<0}
{0}
{z|z>0}
{zlz<0}
{zlz=0}
Z

25

An abstraction by signs : example

with

Xj
Xi
X3
X
X;
X
X
X
X
X;

Tt

Env

[x :=2T* (X%)

[x < O (X}) L X%
i

[x < OFF (X3)

[x:=x+ 1]* (X}

Ix > OF (X5)
|[y ._ x]]ﬁ Xﬁ
Ix > OFF (X})
Ly :== 0¥ (X)
XU X
succh (L
succt (—
succt (0
succ! (—

)
)
)
o)

X

Xﬁ

1

X3

which Xg
X
X;
X5

simplifies into

X

)
4

;y:T]
Xh[x > T]
—JUF Xt

26

Abstraction by intervals

Int = {la,bl|a,beZ a<b}uU{l}

with Z = Z U {—o0, +-00}.
1 represents () and [a, b] the property {z|a < z < b}.

Env' £ V — Int: an interval is associated to each variable.

27

Abstraction by intervals : example

with

X;
X
X3
X5
Xi
X
X;
X
X
X

Thw
[x :=2T" (X)

[x < O (X}) Lf XE
[x < OF* (X3)

Ix = x + 177 (x5)
[x > 0O (X5)

[v:= x]]u X5

Ix > 0]* (X})

[y = OFF ()

X: U XS

succf (L)
succt([a, b))

Xg [x : [—o0,4+00]; ¥ : [—00, +00l]
Xg Xg [x = [—00, +o0]]
X4 XA = XE (x) 1F [—o0, -1 L* X2
X X5[x — Xj(x) ¥ [—o0, —1]]
Xﬁ Xg [x — succ“(Xg(x))
X X3lx = X5(x) 1 [0, +o0]]
Xg Xg ly— Xu(x)
X2 X = X2 (x) 11# [0, +o0]]
X: X2y — [0,0]]
X4 X2 LF XE
1
a+1,b+1]

28

Outline

© Building a generic abstract interpreter

29

Soundness criterion

YEnv“[P]]u)

Given an environment concretisation
function Yg,e € Env® — P(Env), we want to
compute an abstract semantics

[P]* € P — Env’ that is a conservative
approximation of [P]".

vk € P, [PI (k) C v([P]* (k)

This leads to a sound over-approximation of
[P] since [P] and [P]*" are equivalents.

[P1 ={ (k)| p € [pP]® (k))

30

Function approximation

When some computations in the concrete world are uncomputable or too

costly, the abstract world can be used to execute a simplified version of these
computations.

> the abstract computation must always give a conservative answer w.r.t.
the concrete computation

Letf € A — A in the concrete world and f* € A* — A* which correctly
approximates each concrete computation.

AL
[EA—
ar Ly g

Correctness criterion : f oy C y o f*

31

Fixpoint transfert

Theorem

Given a monotone concretisation between two complete lattices

(Aﬁ, ct L%, |_|u) — (A, 5,1, M), a function f* € A* — A* and a monotone
function f € A — A which verify f oy C 7y o f*, we have

Ifp(f) C y(Ifp(f*))

It means it is generally sound to mimic fixpoint computation in the abstract.

32

Environment abstraction : sufficient elements

Thanks to the previous theorem, it is sufficient to design an abstraction
domain Env® with a correct approximation [i1* of [i] for all instructions i.

Vp? € Eno®, [i] (Yeno(p*)) € Yeno (LD (p%))
And [P]* is defined as the least fixpoint of the system :

Wk € labels(P), X = XH™ L# |_|‘zk, o T (X0

) ginit [Tpwo if k= Kinit
with X% { 1] otherwise

33

A Generic Abstract Interpreter

Numeric Abstraction

34

Non-relational environment abstraction

We start with the description of a non-relational abstraction : each variable is
abstracted independently.

Env* £ V — Num®
Vol of € Enot, of Cf o Vrc V. of(x) CF of
pPi, Py € ENUT, P LE,, P xev, pl(x) “Num pz(x)
Vo' € Ent®, vew(pf) = {p|Vx €V, p(x) € Ynum(p*(x)) }

See the end of the lecture for a relational abstraction.

35

Sign abstraction

-0

-
um (L)

_0/ \+0 YN) = {zlz<0}
um(0) = {0}
/ \ / \ YLL(H = {z]z>0}
)
)
)

- 0 + Ynum(—0) = {z1z2<0}
\ ‘ / YNum (+o = {ZIZZO}
J_ YNum(T = Z

We will use this abstract domain as runnign example but you should keep in
mind this is just an example among other numerical abstract domains.

36

Construction of [[x :=?]"

[x =21 (p*) = plx =+ Touml, Vo € Envf
with Tnum € Num? such that Z € vaum (T Num)-

37

Construction of [[x := e

[iv = el (0°) = p¥|x = ALl (6%)], Vp* € Enc

with
Ve € Expr, Ale]* € Env* — Num®

a (forward) abstract evaluation of expressions
Allnl® (p*) = const?(n)
AT (p%) = pP(x)
Alleroeoll* (p*) = of (Alleal” ("), Alle2l* ("))

38

Required operators on the numeric abstraction

> const! € Num — Num’ computes an approximation of constants

Vn € Z/ {7’1} - YNum(ConStﬂ(n))

> Tnum € Num? approximates any numeric value

VA g YNum(TNum)

> of € Num’ x Num® — Num’ is a correct approximation of the arithmetic
operators 0 € {+, —, X}

an,ng € Num’,
{11 0m 111 € Ynum(1)), 12 € YNum(12) } C Yivum (0% (15, 13))

39

Example : sign abstract domain

const? (n) = {

Example : sign abstract domain

+ ifn>0
constf (n) =< 0 ifn=20

— ifn<0

Example : sign abstract domain

ifn>0

ifn=20

| o+

const? (n) = {

ifn<0

40

Example : sign abstract domain

ifn>0

ifn=0
ifn<0

¢

const (1)

40

Example : sign abstract domain

ifn>0

ifn=0
ifn<0

¢

const (1)

40

Construction of [t

More difficult, because ideally such a refinement should be possible...

[[(Ofy)fx>0]]ti
-

[x — +; y — — x—+ y— -]

41

Construction of [t

lercealF (09) = (exMir (0%, 1) 1, Healisge (0%, 13)
with (1}, 18) = [cWiomp (Al TF (0%), Alle2lF (o)

> ﬂcﬂigompe Num! x Num? — Num? x Num® computes a refinement of
two numeric abstract values, knowing that they verify condition c

> |Ie]]¢gxpre Env* x Num® — Enof |[e]]¢2xpr (p*,n*) computes a refinement of
the abstract environment p, knowing that the expression e evaluates into
a value that is approximated by 7 in this environment.

42

[=1F (%,) =

43

it
[=17 (¥, y%) = (&% MF %, % P)

43

(af f 4, o
Yt ity

I (%, %) =

[

43

44

44

Required operators on the numeric abstraction

{(nl,nz) |11 € Ynum (1)), 12 € Ynum (1), 11 ¢ 12

c 'YNum(mg) XY Num (mz)
with (m},m3) = [clfomp (1}, 15)

i u g f—
goon LEno if const® (1) My 7* = LNum
Il (otn7) = { o Bronetls
[xlér (pF,7%) = (pFlx = pP(x) Mgy 1)
[[61 OeZH\Lgxpr (pﬁ/ nﬁ) = gl[el]ugxpr (pﬁ/ ”%) H%nv IIEZ]]J/gxpr (pﬁ/ ﬂg))

with (nf,nd) = [ollbp (nf, Aller]F (%), Alle2]* (p%))

45

Required operators on the numeric abstraction

ﬂoﬂigpe Num® x Num® x Num* — Num* x Num?

[[0]]¢gp (nt, n?, ng) computes a refinement of two numeric values n? and ng
knowing that the result of the binary operation o is approximated by 7 on
their concretisations.
Vnﬁ,nﬁ,ng € Num',
(n1,12) | 11 € YNum (1), 12 € Ynvum (13), (11 0 12) € Yovum (1) }
C YNum (115) X YNum (715)
with (mf, m8) = [ollp (n*,nf, nf)

46

47

47

Ocaml code...

module type NumAbstraction =
sig
module L : Lattice
val backTest : comp -> L.t -> L.t -> L.t * L.t
val semOp : op -> L.t -> L.t -> L.t
val back_semOp : op -> L.t -> L.t -> L.t -> L.t * L.t

val const : int -> L.t

val top : L.t

val to_string : string -> L.t -> string
end
module EnvNotRelational = functor (AN:NumAbstraction) ->

(struct ... end : EnvAbstraction)

48

Outline

@ Numeric abstraction by intervals

49

Abstraction by intervals

Int & {la,b]la,beZ, a<b}U{Ll} withZ =Z U{—00,+00)}
Lattice :

I € Int c<a b<d abcdeZ
L Gl [a,b] T [c, d]

Iume L £ I VIelnt
def

Ll I vIelnt
[@,b] Unt [c,d] = [min(a, c), max(b,d)]

IMe L £ 1, VIcInt
1l £ 1, VIelnt
[a,b] Mine [e,d] = pime(Imax(a, ¢), min(b, d)])

with p € (Z x Z) — Int defined by

a,b] ifa<b,

Pint(a,b) = { 1 otherwise

J—Int
TInt

Yint (i) d:ef
def

Yine(la, b]) =

[—00, +00]

0
{zeZ|a<zandz <b}

51

All the other operators are stricts : they return L if one of their arguments is 1.

+* ([a,], [c, d])
~*([a,b), [c,d])
x* ([a,b], [c,d])
l[+]]¢ﬁp ([a, b], [c,d], [e, 1)
[-145, (la, b, [c, d), le, f])

[+144, (1,8, e,], e, 1)

[a+c,b+d
[a—d,b—c]
[min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

(p(max(c,a —f), min(d,b—e)),
p(max(e,a —d), min(f,b—c)))

(p(max(c,a +e), min(d, b +f)),

b), min(f,d —a)))

p(max(e,c —

(e, dl, le, f1)

a, b HIr\t c, d} [El b] Mint [C/ d])

(I

(la, b] Mt [—o0,d — 1], la 4+ 1, +00] My [c, d])
([a, b] Mint [—00, d], [a, +00] Myt [c, d])

? exercise..

[n,n]

52

Convergence problem

Such a lattice does not satisfy the ascending chain condition.

Example of infinite increasing chain :
lcoocollc---c0,nc---

Solution : dynamic approximation
> we extrapolate the limit thanks to a widening operator V
10,0 [0,1] = [0,2] C [0, +00] = [0,2]V[0, 3]

53

Outline

@ Widening/Narrowing

54

Fixpoint approximation

Lemma

Let (A, C, U, M) a complete lattice and f a monotone operator on A. If ais a
post-fixpoint of f (i.e. f(a) C a), then lfp(f) C a.

We may want to compute an over-approximation of lfp(f) in the following
cases :

> The lattice does not satisfies the ascending chain condition, the iteration
L,f(L),...,f"(L),... may never terminates.

» The ascending chain condition is satisfied but the iteration chain is too
long to allow an efficient computation.

> Id the underlying lattice is not complete, the limits of the ascending
iterations do not necessarily belongs to the abstraction domain.

55

Widening

Idea : the standard iteration is of the form
=1, X" =Fx") =x"UF(x")
We will replace it by something of the form
y() _ L,ynJrl — yHVF(yn)

such that
(i) (y") is increasing,
(ii) " C y", forall n,
(iii) and (y") stabilizes after a finite number of steps.
But we also want a V operator that is independent of F.

56

Widening : definition

A widening is an operator V : L x L — L such that
> Vx,x' e L,xUx' C xVx" (implies (i) & (ii))
> Ifx°CxlC ... isan increasing chain, then the increasing chain
Y0 =0,y = y"Vx" L stabilizes after a finite number of steps (implies

(iii)).

Usage : we replace x¥ = L, x""! = F(x")
by }/O — J_,ynJrl — ynVF(yn)

57

Widening : theorem

Theorem

Let L a complete lattice, F : L — L a monotone function and V : L x L — La
widening operator. The chain y° = |, y""! = y"VF(y") stabilizes after a finite
number of steps towards a post-fixpoint y of F.

Corollary : Ifp(F) C y.

58

Scheme

decreasing ‘:"
iteration
with A

/ incrgasing
itération
with v

Example : widening on intervals

Idea : as soon as a bound is not stable, we extrapolate it by +o0 (or —oo). After
such an extrapolation, the bound can’t move any more.

Definition :
a,b)Vinla',b'] = [ifa’ <athen —ooelseq,
if b’ > b then + oo else b]
L Vinla’, b'] = [a',b]
I vh’lt J_ — I
Examples :

[—3,4]Vin[—3,2] = [-3,4]
[—3,4]Vi[—3,5] = [-3, +0]

60

Example

x ;= 100;
X1 = [100, 100] Lyt (Xz —tn, 1])
while 0 < x{
Xy = [1,400] Mt X3
X =x—1
}
X3 = [—00,0] Mt X3
i(Dx =100
0<x XO > X
$/

61

Example : without widening

X; = [100, 100] Upy (X> —* [1,1])
XZ = [1/ +OO] ’_lh’lt Xl
X3 = [—00,0] Mt X1

Iteration strategy : 1 -2 -3 —-1—=2— ---
X) =1 X =1[100,100] Uy (X5 —* [1,1])

X)=1 X3 =11, +o0] M X| !
X§=1 Xy =[—00,0] Mt X{ "'

X1
X5
X3

-

Example : without widening

X; = [100, 100] Upy (X> —* [1,1])
XZ = [1/ +OO] ’_lh’lt Xl
X3 = [—00,0] Mt X1

Iteration strategy : 1 -2 -3 —-1—=2— ---

X) =1 X =1[100,100] Uy (X5 —* [1,1])

X)=1 X3 =11, +o0] M X| !
X§=1 Xy =[—00,0] Mt X{ "'

X; [L [100,100] [99,100] [98,100] [97,100]
X, | L [100,100] [99,100] [98,100] [97,100]
X; | L 1 1 1 1

(1,100] [0, 100]
(1,100] [1,100]
1 [0, 0]

62

Example : with widening at each nodes of the cfg

[100 100] Umnt (X2 —t [1 1])
[1, +00] M X1
[—00, 0] Mime X1

X =
X5
X3

Iteration strategy : 1 -2 —+3 -1 —=2 — ---

X)=1 X" = X!V ([100,100] U (X5 —F [1,1]))
Xp=1 X5 = X3V ([1, +00] M X7)
X§=1 X5 = XUV ([—00, 0] Mpne X7

X[L
X | L
X | L

Example : with widening at each nodes of the cfg

[100 100] Umnt (X2 —t [1 1])
[1, +00] M X1
[—00, 0] Mime X1

X =
X5
X3

Iteration strategy : 1 -2 —+3 -1 —=2 — ---

X)=1 X" = X!V ([100,100] U (X5 —F [1,1]))
Xp=1 X5 = X3V ([1, +00] M X7)
X§=1 X5 = XUV ([—00, 0] Mpne X7

X; | L [100,100] [—oo,100]
X, | L [100,100] [—o0,100]
X3 | L 1 [—o00, 0]

Improving fixpoint approximation

Idea : iterating a little more may help...
Theorem
Let (A, C, U, 1) a complete lattice, f a monotone operator on A and a a post-fixpoint of

f. The chain (x,), defined by{ a1 = Fl) admits for limit (|_|{x,}) the

greatest fixpoint of f lower than a (written gfp, (f)). In particular, 1fp(f) C | |{x,}.
Each intermediate step is a correct approximation :

vk, Ufp(f) C gfp,(f) Cxx Ca

64

Narrowing : definition

A narrowing is an operator A : L x L — L such that
> Vx,x' € L,x’ T xAx' C x

> Ifx° Jx .. isa decreasing chain, then the increasing chain

Y0 =20,y = y"Ax"! stabilizes after a finite number of steps.

65

Narrowing : decreasing iteration

Theorem
If A is a narrowing operator on a poset (A, C), if f is a monotone operator on A and a
is a post-fixpoint of f then the chain (x,), defined by { y z ik Af ()

stabilizes after a finite number of steps on a post-fixpoint of f lower than a.

66

Narrowing on intervals

[a, bl Antlc, d) ifa = —ocothencelsea ; if b = +oo then d else b]
I A L s
1 A 1 = 1

Intuition : we only improve infinite bounds.

In practice : a few standard iterations already improve a lot the result that has
been obtained after widening...

> Assignments by constants and conditional guards make the decreasing
iterations efficient : they filter the (too big) approximations computed by
the widening

67

Example : with narrowing at each nodes of the cfg

X; = [100, 100] Umnt (X2 —1 1, 1])
Xp = [1,400] Mt X3
X3 = [—00,0] Mt X3

Iteration strategy : 1 -2 —+3 -1 —=2 — ---

X = [~00,100] X! = X Apn ([100,100) Uy (X3 — [1,11))
X9 = [-00,100] XU+ = X2 A ([1, +00] Mine X7 H)
X§=[-00,0] X1 = X2Ap ([—00, 0] Mine XI1)

X1 | [—o0,100]
X5 | [—00,100]

Example : with narrowing at each nodes of the cfg

X; = [100, 100] Umnt (X2 —1 1, 1])
Xp = [1,400] Mt X3
X3 = [—00,0] Mt X3

Iteration strategy : 1 -2 —+3 -1 —=2 — ---

X = [~00,100] X! = X Apn ([100,100) Uy (X3 — [1,11))
X9 = [-00,100] XU+ = X2 A ([1, +00] Mine X7 H)
X§=[-00,0] X1 = X2Ap ([—00, 0] Mine XI1)

Xi | [~00,100] [—oc0,100] [0,100]
X5 | [—o00,100] [1,100] [1,100]
X3 | [—o00,0] [—o0, 0] [0,0]

The particular case of an equation system

Consider a system

X1
Xn
with fi, ..., f, monotones.
Standard iteration :
i+1
x'1+1
1
X5
xir1

= fl(xli,...
= fz(xll,...

S f

Standard iteration with widening :

i+1
x1+1 _
L —
Xy =

i+1
Xn

xi vfi (xil, .
Xész(xll, .

XL V(.

f1(X1,...
S flx,..

69

The particular case of an equation system

X1

fl(xlr"'/xn)
Xo = falxi,...,x)

It is sufficient (and generally more precise) to use V for a selection of index W
such that each dependence cycle in the system goes through at least one point
in W.
Vk =1.n, x = x;;vfk(xa,....,xi) ifkeW
felx, o, x) otherwise

Chaotic iteration : at each step, we use only one equation, without forgetting
one for ever.
Contrary, to what happen in a standard dataflow framework
(with monotone functions and ascending chain condition), the
iteration strategy may affect a lot the precision of the result. See
E. Bourdoncle, Efficient Chaotic Iteration Strategies with Widenings,
1993.

70

Direct iteration on program syntax tree

Is is also possible to directly iterate over the program syntax tree.

[while ¢ do s]| (mg) =[—t] (lfp (?\mﬁ. mg Ut o [sT (mﬁ)))
or
[while t do sl (m}) = [—#] (1p}, (A mf U [o [s] ())

See A. Miné, Tutorial on Static Inference of Numeric Invariants by Abstract
Interpretation. Found. Trends Program. Lang. 4(3-4) : 120-372 (2017).

71

Outline

@ Polyhedral abstract interpretation

72

Polyhedral abstract interpretation

Automatic discovery of linear restraints among variables of a program.
P. Cousot and N. Halbwachs. POPL'78.

i/

Patrick Cousot Nicolas Halbwachs

Polyhedral analysis seeks to discover invariant linear equality and inequality
relationships among the variables of an imperative program.

73

Convex polyhedra

A convex polyhedron can be defined algebraically as the set of solutions of a
system of linear inequalities.

Geometrically, it can be defined as a finite intersection of half-spaces.

74

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;

while (x<6) {
if (M) {
y = y+2;

b

X = x+1;

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x=0 A y=0}

while (x<6) {
if (M) {
{x=0 AN\ y=0}
y = y+2;

b

X = x+1;

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x=0 A y=0}

y
while (x<6) {
if (M) {
{x=0 AN\ y=0}
y = y+2;
{x=0ANy=2}
};
{x=0ANy=0w{x=0 A y=2}
T X
At junction points, we X = x+1;

over-approximates union by
a convex union. }

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x=0 A y=0}

y
while (x<6) {
if (M) {
{x=0 AN\ y=0}
y = y+2;
* {x=0ANy=2}
};
x=0AN0<y<2}
X
At junction points, we X = x+1;

over-approximates union by
a convex union. }

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x=0 A y=0}

y
while (x<6) {

if (™ {

{x=0 AN\ y=0}
y = y+2;

{x=0ANy=2}

};

® {x=0AN0<Ly<2}
X
X = x+1;

x=1AN0<y<2}

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

do

x=0;y=0;
x=0ANAy=0w{x=1 N0<y<2}

while (x<6) {

if (™ {
{x=0 AN\ y=0}
y = y+2;
{x=0ANy=2}
};
{x=0AN0<y<2}
X = x+1;

{x=1AN0<y<2}

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x<I A0Sy <2}

y
while (x<6) {

if () {

{x=0 AN\ y=0}
y = y+2;

{x=0ANy=2}

};
x=0AN0<y<2}

X
X = X+1;

x=1AN0<y<2}

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x<I A0Sy <2%}

y
while (x<6) {

if () {

{x<1A0<y<2x)
y = y+2;

{x=0ANy=2}

};
x=0AN0<y<2}

X
X = X+1;

x=1AN0<y<2}

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0; y=0;
{x<1 AN 0Ly <2}

while (x<6) {

if (M {
{x<1 AN 0Ly <2x}
y = y+2;

<1 AN2<y<2x+2}
};

x=0AN0<y<2}

X = x+1;
x=1AN0<y<2}

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x<I A0Sy <2%}

while (x<6) {
if () {
x<1I A0y <2x}
y = y+2;
x<1A2<y<2x+2}
b

x<1 A 0Ly <2}
X w{x<1A2<y<2x+2}
X = x+1;
x=1AN0<y<2}

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x<I A0Sy <2%}

y
while (x<6) {

if (7)) {

x<1AO0<L<y<2x}
y = y+2;

LT A2y < 2x+2}

};
0<x<1TAN0OLy<2x+2}

X
X = X+1;

x=1AN0<y<2}

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x<I A0Sy <2%}

y
while (x<6) {

if (7)) {

x<1AO0<L<y<2x}
y = y+2;

LT A2y < 2x+2}

};
0<x<1TAN0OLy<2x+2}

X
X = X+1;

I1<x<2ANAN0<y <2

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{x<I A0Sy <2}

y
v{x<2 N0<y<2x}
while (x<6) {
if (7 {
x<1AO0<L<y<2x}
y = y+2;
x<1A2<y<2x+2}
I
0<x<TA0Ly<2x+2)
X
At loop headers, we use x = x+1;
heuristics (widening) to {1<x<2AN0<y<2)}

ensure finite convergence. 3

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{0<y <2x}

while (x<6) {

if (7)) {
<1 A0Sy <2x)
y = y+2;
x<1A2<y<2x+2}
I
{0<x<1T A0Sy 2x+2)
At loop headers, we use x = x+1;
heuristics (widening) to {1<x<2AN0<y<2)}

ensure finite convergence. 1

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.

By propagation we obtain a
post-fixpoint

x=0;y=0;
{0<y <2x}

while (x<6) {
if (7)) {
{0<y<2x N x5}
y = y+2;
2<y<2x+2 N x <5}
b
0<y<2x+2 N 0<x<5}

X = x+1;
0<y<2Zx A1g<x<6}

{0<y<2x A 6<x}

75

Polyhedral analysis

State properties are over-approximated by convex polyhedra in Q2.
x=0;y=0;
{0<y<2x Ax<6}

while (x<6) {

if (™ {
. . {0<y<2x N x5}
By propagation we obtain a = ye2
-fixpoint which is oS

post-fixp 2<y<2x+2 A x<5)

enhanced by downward b

iteration. 0<y<2x+2 A 0<x<5)
X = x+1;

0<y<2x N 1<x<6}

{0<y<2x N\ 6 =x}

75

Polyhedral analysis

A more complex example.
x =0; A;
y

y:
{A<y<2x+AANx <N}

while (x<N) {

if (M {
(A<y<2x+A A x<N-—1}
The analysis accepts to y = y+2;
replace some constants by {A+2<y<2x+A+2 ANx<N-1}
parameters. i

(A<y<2x+A+2 A0<x<N—1}

X = X+1;
A<y<2x+AN1<<x< N}

{A<y<2x+A N N=x}

76

The four polyhedra operations

> welP, x P, —» P, : convex union

> over-approximates the concrete
union at junction points

x=0;y=0;
> NnelP, x P, — P, : intersection Py =y =0][[x:=0] (Q*) Vv P,
> over-approximates the concrete Wh_ile (x<6) {
intersection after a conditional if M {
intruction Py =Ponix <6}
> P, — P, : affine transformati v
[x :=e] € P, — P, : affine transformation P, =[y:=y+2](P))
s
> over-approximates the assignment P3; =PiwP,
of a variable by a linear expression x = x+1;
> velP, xP, - P,:widening) Py = [[x:=x+ 1] (P5)
> ensures (and accelerate.s) . Ps =Py N{x > 6}
convergence of (post-)fixpoint
iteration

> includes heuristics to infer loop
invariants

77

Library for manipulating polyhedra

» Parma Polyhedra Library 3 (PPL), NewPolka : complex C/C++ libraries
> They rely on the Double Description Method

> polyhedra are managed using two representations in parallel

> by set of inequalities

x> —1
_ 2| x—y=-3
x+2y > —4

> by set of generators

A1, A2, Az, 1, R*
P:{7\151+?\252+?\353+u1r1+u2r2EQ2 LAz A3 K2 € }

AM+A+A3=1
> operations efficiency strongly depends on the chosen representations, so
they keep both

3. Previous tutorial on polyhedra partially comes from http://www.cs.unipr.it/ppl/
78

http://www.cs.unipr.it/ppl/

Outline

@ Readings

79

References (1)

A few articles

> a short formal introduction
P. Cousot and R. Cousot. Basic Concepts of Abstract Interpretation. http://www.di.ens.
fr/ ~cousot/COUSOTpapers/WCCO4. shtml

> technical but very complete (the logic programming part is optional) :

P. Cousot and R. Cousot. Abstract Interpretation and Application to Logic Programs. http:
//www.di.ens. fr/ ~cousot/COUSOTpapers/JLP92.shtml

> application of abstract interpretation theory to verify airbus flight

commands
P. Cou;ot, R. Cousot, |. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The
ASTREE Analyser. http://www.di.ens.fr/~cousot/COUSOTpapers/ESOPO5. shtml

80

http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/WCC04.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/JLP92.shtml
http://www.di.ens.fr/~cousot/COUSOTpapers/ESOP05.shtml

References (2)

On the web :

> informal presentation of Al with nice pictures
http://www.di.ens. fr/~cousot/AI/IntroAbsInt.html

> a short abstract of various works around Al
http://www.di.ens. fr/ ~cousot/AI/

> very complete lecture notes
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

81

http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www.di.ens.fr/~cousot/AI/
http://web.mit.edu/afs/athena.mit.edu/course/16/16.399/www/

Sack to constant-time static analysis

Constant-time analysis at source level

s

Sandrine Blazy, David Pichardie, Alix Trieu.
Verifying Constant-Time Implementations by Abstract Interpretation.

ESORICS 2017.

Compcert C

Cminor

We perform static analysis at (almost) C level Verasco static

analyzer + tainting

* Based on previous work with a value
analyser, Verasco

* We mix Verasco memory tracking with fine-
grained tainting Mach

- Main difficulty : alias analysis taking into <86
account pointer arithmetic o G ey

RTL

LTL

The Verasco project VERZ]SCO

INRIA Celtique, Gallium, Antique, Toccata + VERIMAG + Airbus _
ANR 2012-2016 http://verasco.imag.fr

Goal: develop and verify in Coq a realistic static analyzer by abstract
interpretation

- Language analyzed: the CompCert subset of C
* Nontrivial abstract domains, including relational domains
- Modular architecture inspired from Astrée’s

- To prove the absence of undefined behaviors in C source programs

Slogan:

* if « CompCert = 1/10th of GCC but formally verified »,
- likewise « Verasco =~1/10th of Astrée but formally verified »

http://verasco.imag.fr

Verified Static Analysis

..

.............................

Verified Static Analysis

..

Logical Framework

(Coq)

Verified Static Analysis

Language
Semantics
(CompCert C)

Logical Framework
(Coq)

Verified Static Analysis

Language
Semantics
(CompCert C)

Logical Framework
(Coq)

Verified Static Analysis

Language
Semantics
(CompCert C)

Logical Framework
(Coq)

Verified Static Analysis

Language
Semantics
(CompCert C)

Logical Framework
(Coq)

Verified Static Analysis

Language
Semantics
(CompCert C)

Logical Framework
(Coq)

analyzer

Verasco
A Formally-Verified C Static Analyzer

: -
JH. Jourdan, V. Laporte, S. Blazy, X. Leroy, D. Pichardie. S. Blazy, V. Laporte, D. Pichardie.

A Formally-Verified C Static Analyzer. An Abstract Memory Functor for Verified C Static Analyzers.
POPL 2015. ICFP 2016.

Compcert C)—) Clight)—) C#minor) —>» Cminor J = RTL J » ASM J
.
CompCert compiler

5 Alarms)(— Abstract interpreter) control flowJ

Memory abstraction) statesJ

Numerical abstraction) numbers

Verasco
Abstract numerical domains

CompCertC)—) Clight)—) C#minorj—)) CompCert compilej

!

Alarms)(_ Abstract interpreter) control rowJ

Memory & value domain | statesJ
Z—int)
numbers
Nonrel— Rel) Nonrel— ReI)
Convex Symbolic
polyhedra equalities | |
Integer congruences) Integer & F.P. intervals)

A

Verasco
Abstract numerical domains

CompCertC)—) Clight)—) C#minorj—)) CompCert compilej

!

Alarms)(_ Abstract interpreter) control rowJ

Memory & value domain | statesJ
Z—int)
numbers
Nonrel— Rel) Nonrel— ReI)
Convex Symbolic
polyhedra equalities | |
VERIMAG work Integer congruences) Integer & F.P. intervals)

A

Verasco
Abstract numerical domains

CompCertC)—) Clight J—) C#minor/—)) CompCert compilej

l

Alarms)(—— Abstract interpreter) control rowJ

transforms any rel. domain

over Z into a rel. domain over
Memory & val. machine integers with modulo states
‘ arithmetic
Z—int)
numbers
_ Nonrel— Rel) Nonrel— ReI)
Convex Symbolic
polyhedra equalities | |
VERIMAG work Integer congruences) Integer & F.P. intervals)

A

Verasco
Abstract numerical domains

;CompCertC)—) Clight J—) C#minorj—)) CompCertcompilej

l

Alarms)(_ Abstract interpreter) control rowJ

Memory & value domain | statesJ

conjunctions of linear 7 s int)
inequalities Yai xi < c

[SAS’13]

numbers
_ Nonrel— Rel) Nonrel— ReI)
Convex Symbolic
polyhedra equalities | |
VERIMAG work Integer congruences) Integer & F.P. intervals)

A

Verasco
Abstract numerical domains

;CompCertC)—) Clight J—) C#minorj—)) CompCertcompilej

l

Alarms)(_ Abstract interpreter) control rowJ

Memory & value domain | statesJ
symbolic conditional ‘
expressions 7 s int)
(improve precision of

assume commands)

/K numbers

_ Nonrel— Rel) Nonrel— ReI)
Convex Symbolic
polyhedra equalities | |
VERIMAG work Integer congruences) Integer & F.P. intervals)

A

Verasco
Abstract numerical domains

CompCertC)—) Clight J—) C#minor/—)) CompCert compilej

l

Alarms)(—— Abstract interpreter) control rowJ

Memory & value domain | statesJ

z_>int)

transforms any non-rel. domain
into a (reduced) rel. domain

| numbers
Nonrel— Rel) Nonrel— ReI)

Convex Symbolic
polyhedra equalities | |

VERIMAG work Integer congruences) Integer & F.P. intervals)

A

Verasco
Abstract numerical domains

CompCertC)—) Clight)—) C#minorj—)) CompCert compilej

!

Alarms)(_ Abstract interpreter) control rowJ

Memory & value domain | statesJ

z_>int)

crucial to analyze the safety
of memory accesses
(memory alignement)

~ numbers
-~ Nonrel— Rel) Nonrel— ReI)
Convex Symbolic
polyhedra equalities J | |
VERIMAG work Integer congruences) Integer & F.P. intervals)

A

Verasco
Abstract numerical domains

CompCertC)—) Clight J—) C#minor/—)) CompCert compilej

l

Alarms)(—— Abstract interpreter) control rowJ

Memory & value domain | statesJ

z_>int)

requires reasoning on
~ double-precision floating-point
J Nonrel— Rel) Nc numbers (IEEE754)

polyhedra equalities

Convex J Symbolic |
VERIMAG work Integer congruences) Integer & F.P. intervals) J .

Verasco
Abstract numerical domains

;CompCertC)—) Clight J—) C#minorj—)) CompCertcompilej

l

Alarms)(_ Abstract interpreter) control rowJ

Memory & value domain | statesJ

/ — Int

custom reduced product

numbers
_ Nonrel— Rel) Nonrel— ReI)
Convex Symbolic
polyhedra equalities | |
VERIMAG work Integer congruences) Integer & F.P. intervals)

A

Verasco
Abstract numerical domains

CompCertC)—) Clight)—) C#minorj—)) CompCert compilej

!

Alarms)(_ Abstract interpreter) control rowJ

Memory & value domain | statesJ
Z—int)
numbers
Nonrel— Rel) Nonrel— ReI)
Convex Symbolic
polyhedra equalities | |
VERIMAG work Integer congruences) Integer & F.P. intervals)

A

Verasco
Implementation

34 000 lines of Coq, excluding blanks and comments
- half proof, half code & specs
* plus parts reused from CompCert

Bulk of the development: abstract domains for states and for numbers
(involve large case analyses and difficult proofs over integer and floating

points arithmetic)
Except for the operations over polyhedra, the algorithms are implemented
directly in Coqg’s specification language.

Fully verified operator External solver with verified operator
transfert function transfert function

- o

- = formally verified
- = not verified g

- checker

untrusted solver

Constant-time analysis at source level

: C Cert
D T e ggnrgp”eerrJ
|

Abstract interpreter) control flow
Memory & value domain) statesJ
Numerical domain) numbersJ

Constant-time analysis at source level

We design an abstract functor

CompCert
compiler

M

Abstract interpreter

)

control flow

N

Taint domain

)

taint

S

M

Memory & value domain)

state

S

N

Numerical domain

)

number

S

N

Constant-time analysis at source level

We design an abstract functor

- takes as input an abstract memory

domain
le]t : M — V!
[x — et : M — M
[[*61 — 62:n : Mu — MH
[x — xe]t: Mt — M

assert(ejIj . M — M

concretize! 1 VI — P(L)

T ——

: CompCert
)_) Mﬁ : _) compilerJ
[

Abstract interpreter) control rowJ
I
Taint domain) taints
I ,,
Memory & value domain) statesJ
I
Numerical domain) numbersJ

Constant-time analysis at source level

We design an abstract functor

« takes as input an abstract memor
domain abstract memory abstract value

[e]t: Mt — Vi

[x — e]t: M — M

[[*61 — 62:n : MH — Mu
[x — *ef“ V(Y] set of concrete

4 memory locations
assert(e)t : Mt — MH! g

concretize! 1 VI — P(L)

T —

: CompCert
)_) M)—) __) compiler

Abstract interpreter) control rowJ
I

Taint domain) taintsJ
I

Memory & value domain) statesJ
I

Numerical domain) numbersJ

Constant-time analysis at source level

We design an abstract functor

- takes as input an abstract memor
domain
[e]*: M — V!
[x — et : M — M
[[*61 — 62:n M — M
[x — * NV (V] set of concrete
assert(ej” oM s memory locations

concretize -

Vi — P(L)

- returns an abstract domain that
taints every memory cells

Tlel': M. — Vi
Tlx — et : M- ML, — ML
Tlxer — e]f: MF— M — ML,
Tlx — *e]: M — ML, — ML

: CompCert
)_) Mﬁ : _) compilerJ
[

Abstract interpreter) control rowJ

Taint domain) taints
Memory & value domain) statesJ
Numerical domain J numbersJ

Constant-time analysis at source level

We design an abstract functor

: CompCert
)_) M)—) _—) compilerJ
[

- takes as input an abstract memor Nostract rarorat
domain abstract memory abstract value stract interpreter e " J
[
: [[G:E : iﬁg — E\;Eﬂ Taint domain) taintsJ
X — el . —
[[*61 — 62:n : MH — MH I
[x — «elt - Mt — Mt mseer;(c)): Cg;‘;:?;is Memory & value domain) statesJ
! |
assert(e)t : Mt — MH! g |
ol f
concretize” : V¥ — P(L) Numerical domain) numbersJ
* returns an abstract domain that value taints
taints every memory cells {MustBelLow, MayBeHiigh}

Tlel': M. — Vi
Tlx — et : M- ML, — ML
Tlxer — e]f: MF— M — ML,
T[[X — *e:'li . M — MEaint — MEaint

tainting of each memory cell

Constant-time analysis at source level

. : CompC.ert
We design an abstract functor Ay > G i
: [
- takes as input an abstract memor et)
domain abstract memory abstract value stractinterpreter) T J
I
: [[G:E : Mg — E\Zfﬂ Taint domain) taints
X —e|t: M*—
[[*61 — 62:n - M — M I ‘
[x — el - M — it of Cloncrt?te Memory & value domain) statesJ
. memory locations
assert(e)t : Mt — MH! g |
izl - Wi ‘
concretize’ : V¥ — P(L) Nurmerioal domain) e
- returns an abstract domain that e e
taints every memory cells {MustBeLow, MayBeHigh}

’]'[[e:ﬂ : MEaint — VEaint Examp|e:
T[[X — e-.u : Mu — 1\/Jlﬂaint — IMLI3aint
Tlrer —» et MM, — ML Txer = e (mh, th) = th/ — Tex]"]
Tlx — et : MM — M VI € concretize! o [e,]#(mt)

— 9
tainting of each memory cell

—xperiments at source level (

=10,

Example Size| Loc| Time
aes 1171 1399| 41.39
curve25519-donna 1210 608| 586.20
des 2291 436 2.28
rlwe_sample 145 1142 30.76
salsa20 341 652 0.04
sha3 531| 251 57.62
SNow 71| 460 3.37
tea 121} 109 3.47
nacl_chacha20 384 307 0.34
nacl_sha256 368 287 0.04
nacl_shab12 437 314 1.02
mbedtls_shal 544 354 0.19
mbedtls_sha256 346| 346 0.38
nbedtls_shab12 3101 399 0.26
mee-cbc 1959 939| 933.37

RICS™7)

10

=xperiments at source level (ESORICS’17)

Example Size| Loc| Time
aes 11711 1399 41.39 Same benphmarks than
curve25519-donna || 1210 608| 586.20 Almeida et i
des 229! 436 2.28
rlwe_sample 145 1142 30.76 @

]
salsa20 34l 692 0.04 J.B. Almeida, M. Barbosa, G. Barthe,
sha3 5311 251} 57.62 F. Dupressoir and M.Emmi.
SNOW 871 460 3.37 Verifying Constant-Time Implementations.
tea 121 109 3.47 USENIX Security Symposium 2016.
nacl_chacha20 384 307 0.34
nacl_sha256 368 287 0.04 Not handled by Almeida et
nacl_shab12 437 314 1.02 al. because LLVM alias
mbedtls_shal 44| 354 0.19 SHEVEB el
mbedtls_sha2b6 346 346 0.38
nbedtls_shab12 310 399 0.26
mee-cbc 1959 939| 933.37

10

Conclusion

Conclusion

this lecture focused on Crypto-Constant-

Time security property

o
» We can build secure programming () Static analysis

abstractions at source level (C- @) Type Systeml
like) using Abstract Interpretation (@) Program logic

Conclusion

this lecture focused on Crypto-Constant-

Time security property

/N
» We can build secure programming @Statlc analysis

abstractions at source level (C- @) Type Systeml
like) using Abstract Interpretation (@) Program logic

Dynamic
é} @ checks

Compiler

ht

EXE

- We make sure the compiler will
generate executables that are as
secure

Conclusion

this lecture focused on Crypto-Constant-

Time security property

@ D @Staticl SIS

» We can build secure programming

abstractions at source level (C- @) Type sys “il
like) using Abstract Interpretation @ Progra
. . Dynamic
- We make sure the compiler will @
, checks
generate executables that are as Compiler

Secure

£ prool 3
|/
» We reduce as much as possible

the TCB (Trusted Computing Base) EXE
with formal proofs

	Introduction
	Intermediate representation: syntax and semantics
	Collecting semantics
	Just put some ...
	Building a generic abstract interpreter
	Numeric abstraction by intervals
	Widening/Narrowing
	Polyhedral abstract interpretation
	Readings

